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1. Introduction

Across the world, policy makers, businesses, civil society and individual citizens have
grappled with the very serious health and economic consequences of the ongoing
COVID-19 pandemic. A highly contagious disease, COVID-19 is still not vaccine
preventable and without exception, policy makers have instead relied on so-called
non-pharmaceutical interventions (NPIs) such as lockdowns, social distancing mea-
sures, workplace rotation schemes and so forth (see e.g. Ely et al., 2020). Common
to all such measures is that they work by creating physical distance between people,
thereby avoiding the spread of the disease from infected to susceptible individuals.
It is no exaggeration to say that these measures have come at an enormous economic

and social cost. During the deepest recession since the Great Depression, businesses
are struggling to keep afloat, workers are cut off from their livelihoods, the elderly and
ill have had access to health care curtailed and many children have had their schooling
and education put on hold or greatly diminished in quality. From any number of
perspectives, the current pandemic has been a calamity unlike any in recent memory.
The central reason for this fallout from the epidemic is the exclusive reliance on

non-pharmaceutical interventions, which by their very nature cut deep into many of
the activities that create welfare and wellbeing in normal times. For this same reason,
there is a general consensus that there are only three possible end games to the cur-
rent epidemic. The worst possible outcome is that the population does not build up
any natural immunity and that the infection becomes endemic (see Giannitsarou et
al., 2020). The second is that some immunity builds up in the population (including
cross-immunity from other infectious diseases), thereby reducing the potency of the
epidemic to the point that it can be effectively managed with a combination of testing,
track and trace procedures and NPIs such as isolation of infected cases. The last, and
by far the best outcome, would be a scenario in which safe and effective pharmaceu-
tical interventions such as vaccines and antivirals become widely and commercially
available.
The focus of the present paper is this third scenario. We model the effects of

mass vaccination and treatment in an economic-epidemiological framework based on
the SIR compartmental model. Such pharmaceutical interventions directly influence
the rates of transition between health states of individuals and therefore also have
important aggregate effects. In many recent studies, the advent of pharmaceutical
interventions has been treated as the end of active disease control, assuming that the
post-vaccine world is a return to normality. But vaccines and antivirals are themselves
imperfect health policy tools that can and should be wielded judiciously. In this
paper, we explicitly consider the socially optimal way to do so. We make two main
contributions: First, we analyze vaccination and treatment as policy instruments,
which can therefore be optimally chosen by decision makers. Second and at the same
time, we study the direct effects of vaccination and treatment on population immunity,
in order to understand its role in optimal policies. This contrasts with the effects of
NPIs, which only influence the accumulation of population immunity indirectly.
In our analysis, we derive the equilibrium and socially optimal level of treatment

with antivirals (that speeds up the rate of recovery) and vaccination (that speeds up the
rate of immunity). We consider the incentives of both individuals under decentralized
decision making and of a utilitarian social planner under centralized decision making.
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We show that while treatment and vaccination have superficial similarities in that they
both contribute to accumulating population immunity, the desirability of and external
effects associated with these two measures are very different and change across the
stages of the epidemic.
For treatment, we find that the external effects of intervention are proportional to

the fraction of remaining susceptible individuals, which is decreasing over time. This
means that socially optimal treatment may involve a switch from an initial phase with
full treatment to a second phase with no treatment. In contrast, for individuals under
decentralized decision making, treatment choices are qualitatively different in nature
and wholly disconnected from the stage of the epidemic.
For vaccination, we find that the external effects of intervention are proportional to

disease prevalence, which is hump-shaped. This means that optimal vaccination may
involve as many as two shifts in policy, with no vaccination at early and late stages of
the epidemic (when prevalence is low) and full vaccination in the intervening period
(when prevalence is suffi ciently high). For individuals under decentralized decision
making, vaccination choices are qualitatively similar to the socially optimal ones. But
as individuals do not take account of externalities, their vaccination decisions will tend
to be socially suboptimal.
We next compare our results on socially optimal policies to the traditional non-

economic approach to treatment and vaccination policies. We show that not only do
the non-economic policies involve lower social welfare than the socially optimal ones,
but also that they may be outperformed by completely non-responsive policies that do
not maximize any objective at all. These results highlight that in order to formulate
effective and welfare-enhancing pharmaceutical interventions, they must be based on
an analysis of how to best achieve well-defined social objectives. When such policies
explicitly take into account the costs and benefits of inducing population immunity,
they can help strike the right balance and lead to improved social wellbeing.
In addition to understanding the nature of vaccination and treatment in shaping

the course of the epidemic, our paper also aims to clarify the role of population (or
herd) immunity in formulating optimal treatment and vaccination policy. Population
immunity is perhaps one of the most central concepts in public health and yet it is
widely misunderstood. In part, the confusion stems from the way that epidemiologists
have often operationalized the concept. But clarity is important, because the concep-
tual confusion has led to ambiguous messaging, with public health experts asserting
that herd immunity is a desirable outcome, while at the same time proclaiming that
there is no explicit strategy in place that relies on herd immunity.1

Since herd immunity is often the explicit goal guiding vaccine policy, it is therefore
useful to first unpack exactly what the concept means and to dispel some unhelpful,
but widely held views. What then, is population immunity? According to Fine (1993),
population immunity refers to "[. . . ] the indirect protection afforded to nonimmune
individuals by the presence and proximity of others who are immune". In the same
way that a protective measure such as an imperfect vaccine can offer the individual
some protection against infection, the presence of immune individuals in the pop-
ulation offers at-risk individuals some indirect protection against infection, because

1See e.g. statements by policy makers in the UK in a recent news story from the BBC at
https://www.bbc.com/news/uk-53433824
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immune individuals cannot pass on the disease to others. It should be emphasized
that whenever individuals get infected and recover with immunity, some amount of
population immunity indeed builds up in the population, regardless of what specific
policy measures we put in place. In other words, if the biology of the disease is such
that recovered people cannot be re-infected, then some population immunity is not
only unavoidable, but also desirable as it works to protect those who are still at risk
of infection. It is precisely in this sense that some public health practitioners refer to
herd immunity as necessary to end the epidemic.
Much of the public health and epidemiology literature holds that population im-

munity is achieved when some critical level of immune individuals in the population
is reached. For example, Brauer and Castillo-Chavez (2012) state that "A population
is said to have herd immunity if a large enough fraction has been immunized to en-
sure that the disease cannot become endemic". However, this definition is problematic
for two reasons. First, it does not recognize that even if falling short of this critical
threshold, the presence of immune individuals still confers some indirect protection to
the non-immune. Second and more importantly, it may cause people to think that
achieving a threshold level of immunity is a worthwhile policy goal per se. As we show
in this paper, this is not the case. A socially optimal vaccine or treatment policy that
seeks to maximize overall social welfare may well fall short of achieving the critical
threshold of immune individuals. Similarly, it may prove optimal to induce immunity
in a higher fraction of the population than the so-called herd immunity threshold. This
is because the optimal policy is guided by overall welfare considerations, rather than
being dictated by a desired level of population immunity.
In summary, inducing population immunity has both costs and benefits and so any

optimal policy will involve balancing these across the stages of the epidemic, carefully
taking into account both the contemporaneous and intertemporal effects on disease
dynamics and welfare.
Our paper sits in between the literatures on treatment and vaccination. The lit-

erature on treatment includes contributions by Sanders (1971), Sethi (1974), Sethi
and Staats (1978), Goldman and Lightwood (1995, 2002), Gersovitz and Hammer
(2004), Rowthorn (2006), Toxvaerd (2009) and Rowthorn and Toxvaerd (2020). In
all these analyses, treatment increases the rate of recovery, but individuals do not
acquire immunity and thus make a transition back to susceptibility as in the classi-
cal susceptible-infected-susceptible (SIS) model. In these models, treatment therefore
works by increasing the measure of susceptibles, whereas in the present analysis, treat-
ment works by increasing the measure of recovered individuals.
There is a very large literature on different aspects of the economic control of in-

fectious diseases through vaccination. Chen and Toxvaerd (2014) provide a detailed
review and synthesis of this literature. Of direct relevance to the work here is Francis
(1997, 2007), who considers fully discounted economic models of vaccination and char-
acterizes optimal and equilibrium outcomes.2 Yusuf and Benyah (2012), Bakare et al.
(2014), Bakare (2015), Ledzewicz and Schattler (2011) and Joshi et al. (2015) consider
treatment and vaccination in compound models, but either use non-standard objec-
tive functions or assume no discounting and finite horizons. Arino et al. (2008) also
consider the dynamics of a model with both vaccination and treatment, but disregard

2Morton and Wickwire (1974) and Francis (2004) consider infinite horizon undiscounted problems.
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Figure 1: SIR Model with Treatment and Vaccination.

issues of optimal control altogether. In the public health and epidemiology literatures,
the research frontier is exemplified by contributions by Milne et al. (2013), Ferguson
et al. (2006), Germann et al. (2006) and Longini et al. (2004). These papers deal
with issues of feasibility and effi ciency, but not with optimality or equilibrium.
Other relevant contributions include Hethcote andWaltman (1973), Barrett (2003),

Barrett and Hoel (2007), Auld (2003), Bauch (2005), Bauch and Earn (2004), Boulier
et al. (2007), Brito et al. (1991) and Gersovitz and Hammer (2004).3 Last, Gersovitz
(2003) considers vaccination in a model with a growing population.
The remainder of the paper is structured as follows: In Section 2, we set out the

classical epidemiological and economic versions of the model. In Section 3, we ana-
lyze the model with treatment, under decentralized and centralized decision making,
respectively. In Section 4, we analyze the model with vaccination, under decentralized
and centralized decision making, respectively. In Section 5, we compare our results
to the standard non-economic analysis found in the epidemiology literature. In Sec-
tion 6, we consider the effects of infection-induced mortality. Section 7 contains the
Conclusion.

2. The Model
To model the build-up of population immunity, we make use of a classical compart-
mental model to describe the underlying disease dynamics. We then superimpose an
economic model of decision making to understand the interaction between vaccination
and treatment decisions and the course of the epidemic.

2.1. The Epidemic SIR Model. The classical susceptible-infected-recovered (or
SIR) model, used as a building block in this paper, is simple to describe and is il-

3Early non-economic contributions include Anderson and May (1992) and Smith (1964).
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lustrated in Figure 1. Time is continuous and runs indefinitely. A closed population
N =[0, 1] consists of a continuum of infinitely lived individuals who can at each in-
stant t ≥ 0 each be in one of three states, namely susceptible, infected or recovered.4

The set of susceptible individuals is denoted by S(t) and has measure S(t), the set of
infected individuals is denoted by I(t) and has measure I(t) and the set of recovered
individuals is denoted by R(t) and has measure R(t). Because the population size is
normalized to one, these measures can be interpreted as fractions.
At each instant, the population mixes homogeneously. The rate at which infection

is transferred in such a match is denoted by β > 0. Coupled with the assumption of
homogeneous mixing, this means that the rate at which susceptible individuals become
infected is given by βI(t)S(t).
Last, individuals spontaneously recover at rate γ ≥ 0. This means that on aggre-

gate, the rate at which recovery occurs is γI(t). Recovered individuals are immune to
further infection and also cannot carry the disease.
The dynamic SIR system is described by the following differential equations and

initial conditions:

Ṡ(t) = −βI(t)S(t) (1)

İ(t) = I(t) [βS(t)− γ] (2)

Ṙ(t) = γI(t) (3)

S(t) = 1− I(t)−R(t) (4)

S(0) = S0 > γ/β, I(0) = I0 ≈ 0, S0 + I0 = 1 (5)

The restriction that S0 > γ/β ensures that the epidemic can take hold in the pop-
ulation. With this assumption in place, the overall behavior of the system can be
described as follows. The measure of susceptible individuals S(t) decreases over time,
while the measure of recovered individuals increases over time. In contrast, the mea-
sure of infected individuals initially increases, peaks at S(t) = γ/β and then tends to
zero. Note that at the peak of the epidemic, disease prevalence takes the value5

Ī ≡ I0 + S0 −
γ

β

[
logS0 − log

(
γ

β

)
+ 1

]
(6)

It is easily verified that this threshold is decreasing in the recovery rate γ and increasing
in the infectiousness β. Both findings are intuitive.
Well-known steps lead to the central result that the final epidemic size is charac-

terized by the equations

S(∞) = 1−R(∞) = S0 exp (−R(∞)R0) ≥ 0 (7)

where R0 ≡ β/γ is the basic rate of reproduction (see e.g. Brauer and Castillo-Chavez,
2012). Since R(0) = 0, the cumulative incidence, i.e. the total case count across the

4The typical duration of an epidemic outbreak is suffi ciently short to justify the assumption that
there are no births in the model. In a later section, the effects of infection-induced mortality are
discussed.

5See Brauer and Castillo-Chavez (2012).
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Figure 2: Dynamics in the SIR Model.

epidemic, is given by R(∞) = 1 − S(∞). As is to be expected, cumulative incidence
is an increasing function of the infectivity parameter β and a decreasing function of
the rate of spontaneous recovery γ.
The basic rate of reproduction represents how many secondary infections are caused

by the insertion of a single infected individual into a fully susceptible population. The
second equation in (7) defines R(∞) implicitly in terms of parameters and initial
conditions and the first equation in (7) defines S(∞) as the residual, which is possible
since I(∞) = 0. The limiting proportions S(∞) and R(∞) are easily found for any
particular parameterization of the model.
In what follows, the notion of herd immunity will feature prominently. A measure

of herd immunity, although imperfect, is the mass of susceptible individuals remaining
at the end of the epidemic, S(∞), since these individuals are not immune yet at no
risk of infection.6

Note the central role played by the basic rate of reproduction. If R0 < 1, then
infection cannot take hold while if R0 > 1, then infection first flares up and then
tapers off. As will become clear in what follows, the optimal (centralized) control of
the epidemic through vaccination or treatment will work by modifying the magnitude
of the rate of reproduction R0.7
Throughout, we will maintain the following assumption:

Assumption 0: β > γ ≥ 0.

Typical dynamics for the SIR model are illustrated in Figure 2.

6The reason that it is only a rough measure of herd immunity is that it ignores the time profile of
infection. In particular, this measure ignores early protection enjoyed by an individual who eventually
becomes infected and recovers.

7Note that R0 = R(0) is the initial condition for the measure of recovered individuals and should
not be confused with the basic rate of reproduction R0.
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2.2. The Economic Model. Having outlined the classical version of the SIR dy-
namics, we now make a number of additions in order to turn it into an economically
meaningful model. We will consider the economic control of the SIR model via two
instruments, namely treatment and vaccination. Treatment, which is costly, increases
the rate at which agents recover (and become immune to further infection). In par-
ticular, for some treatment intensity τ(t) ∈ [0, 1], the rate at which the individual
transitions from I(t) to R(t) is given by τ(t)αT + γ, where αT > 0 is interpreted
as the effi ciency of the treatment. This means that treatment increases the rate of
recovery over and above the background rate γ.8 Treatment is assumed to cost cT > 0
per instant per individual.
Turning to vaccination, denote by v(t) ∈ [0, 1] the rate at which individuals are

vaccinated. The vaccine offers imperfect protection, being subject to potential failure
or delay in achieving effectiveness. Thus vaccination at rate v(t) induces transition
from S(t) to R(t) at rate αV v(t), entirely bypassing the class of infected individuals
I(t). The parameter αV > 0 can be interpreted as the speed at which immunity
becomes effective.9 Vaccination costs cV > 0 per instant per individual.
The transitions between health states caused by vaccination and treatment are

illustrated in Figure 1.
Having described the available tools for managing the epidemic, we will describe

the payoffs of the decision makers. It will be assumed that the individuals in the sets
S(t), I(t) and R(t) earn flow payoffs πS , πI and πR respectively and discount the
future at rate ρ > 0. We assume that the flow payoffs are ranked as follows:

Assumption 1: πS ≥ πR ≥ πI .

The simplifying assumption πR = πS is common in the vaccination literature, as
it allows the modeler to focus on infected versus non-infected individuals, rather than
on the three state variables in the present formulation. Instead, we will allow for the
possibility of after-effects of infection as these can be serious.10

For simplicity, we have modeled treatment and vaccination as continuous variables,
but they can alternatively be interpreted as randomizations over discrete choices.
In what follows, control variables with a subscript i refer to those of individuals

under decentralized decision-making, while control variables without such a subscript
refer to the those of a social planner under centralized decision making.

3. Disease Dynamics Under Treatment
In this section, we first characterize equilibrium treatment behavior under decen-
tralized decision-making and then characterize the optimal policy under centralized
decision-making. As will become clear, the outcomes under centralized decision mak-
ing will not only differ from the optimal outcome quantitatively, but also qualitatively.
This difference will be shown to be intimately related to how the planner and the
individuals view the benefits of herd immunity.

8The expected time to recovery under continuous treatment is 1/(γ + αT ).
9The expected time to immunity under continuous vaccination is 1/αV .
10One can think of πR = πS − επA, where ε ∈ [0, 1] is the probability of after-effects and πA > 0

is the disutility cost of those effects.



Managing Population Immunity 9

3.1. Treatment Under Decentralized Decision Making. Consider an individ-
ual’s problem. For any fixed treating intensity τ(t), the health state of the individual
follows a three-state continuous-time Markov process. Fortuitously, the actual prob-
lem to be solved by an individual can be considerably simplified by noting that in
two of these states, the privately optimal choice is trivial. Since treatment is costly,
it is optimal for a susceptible or recovered individual to seek no treatment at all. The
problem is therefore reduced to determining the privately optimal policy for an in-
fected individual. Without loss of generality, consider an individual who is infected at
t = 0. Since susceptibility is not feasible for this individual, all he or she is concerned
with is the possible transition from the infected to the recovered state. The individual
i ∈ I(t) then solves the following problem:

max
τ i(t)∈[0,1]

∫ ∞
0

e−ρt[QI(t) (πI − τ i(t)cT ) + (1−QI(t))πR]dt (8)

s.t. Q̇I(t) = −QI(t) [αT τ i(t) + γ] , QI(0) = 1 (9)

where QI(t) is the probability of residence in the infected state at time t. This for-
mulation of the individual’s problem is the population game formulation developed by
Reluga and Galvani (2011). The integrand is simply the expected flow payoff of an
individual, while the differential equation governs the evolution of the transition rate
between the infected state and the recovered state. Because an infected individual is
essentially trading off the costs and benefits of a transition from one state to another,
the problem can be reduced to one with a single state variable QI(t).

The individual’s problem is equivalent to the following simplified problem, which
differs only by the constant πR:

max
τ i(t)∈[0,1]

∫ ∞
0

e−ρtQI(t)[πI − πR − τ i(t)cT ]dt (10)

s.t. Q̇I(t) = −QI(t) [αT τ i(t) + γ] , QI(0) = 1 (11)

This objective is simply the expected, discounted utility for an individual pursuing
treatment strategy τ i(t). Note that in steady state, Q̇I(t) = 0 and so it must be that
QI = 0 eventually if γ > 0, even if no treatment is sought.

The associated current-value Hamiltonian for this problem is given by11

HD
T ≡ QI(t)[πI − πR − τ i(t)cT ]− λDT (t)QI(t) [αT τ i(t) + γ] (12)

where λDT (t) is the costate variable. Since the state variable in the individual’s problem
is the probability of being in the infected state, the costate variable can be interpreted
as the shadow value of recovery.

Differentiating the current value Hamiltonian with respect to the treatment rate

11In the individual’s problem, an admissible pair of functions (QI(t), τ i(t)) is such that for all
t ≥ 0, QI(t) satisfies the differential equation for the state variable QI(t) and τ i(t) ∈ [0, 1] is piece-
wise continuous.
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τ i(t) yields the following necessary condition for optimality:

∂HD
T

∂τ i(t)
= QI(t)

[
−cT − αTλDT (t)

]
= 0 (13)

This Hamiltonian condition simply states that the marginal cost of treatment
equals the marginal benefit of treatment. To see this, recall that αT is the rate at
which treatment induces recovery and that the costate variable λDT (t) is the marginal
benefit of recovery.
The evolution of the multiplier is given by the following differential equation:

λ̇
D

T (t) = ρλDT (t)− ∂HD
T

∂QI(t)
(14)

= λDT (t) [ρ+ αT τ i(t) + γ] + [πR − πI + τ i(t)cT ] (15)

It is immediately clear that the net benefit of recovery is independent of the aggregate
state of the system and of time. That is, conditional on being infected, the problem
is stationary. But then it must be that λ̇

D

T (t) = 0, which implies that

λDT (t) =
πI − πR − τ i(t)cT
ρ+ αT τ i(t) + γ

(16)

Substituting this in the Hamiltonian condition (13) yields the following result:

Proposition 1. The equilibrium treatment policies under decentralized decision mak-
ing are given by

τ i(t) = 0 for cT (ρ+ γ) > αT (πR − πI) (17)

τ i(t) ∈ [0, 1] for cT (ρ+ γ) = αT (πR − πI) (18)

τ i(t) = 1 for cT (ρ+ γ) < αT (πR − πI) (19)

The privately optimal policy for an individual (i.e. his or her best response func-
tion) simply states that treatment should be sought if and only if the expected dis-
counted benefit (to the individual) is larger than the cost of treatment. If the benefit is
large enough, then all infected individuals will always seek full treatment and the model
reduces to the classical SIR model (but with an increased recovery rate αT +γ). If the
benefit is not large enough, then no infected individual will ever seek any treatment
and the model then reduces to the classical SIR model with recovery rate γ > 0.
These findings are summarized as follows:

Corollary 2. Under decentralized decision making: (i) if cT (ρ+ γ) > αT (πR − πI),
then the equilibrium outcome coincides with that of the SIR model with recovery rate
γ > 0; (ii) if cT (ρ+ γ) < αT (πR − πI), then the equilibrium outcome coincides with
that of the SIR model with recovery rate αT + γ.

The comparative statics of the privately optimal decentralized policy are straight-
forward. The higher the discount rate ρ , the recovery rate γ or the treatment cost
cT , the less attractive does treatment become. Conversely, treatment becomes more
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attractive the higher the effi ciency of the treatment αT or the higher the recovery
premium (πR − πI).
It is interesting to note that the treatment decision is not strategic, in the sense

that an individual’s privately optimal action depends on those of other individuals as
would be the case with treatment in a susceptible-infected-susceptible model (see e.g.
Toxvaerd, 2010). This is because while infected individuals’treatment decisions do
influence the prospects of the susceptibles, this influence is ignored by the infected
individual since there is no feedback from these decisions to the individual’s future
welfare. Therefore infected individuals seek treatment if and only if doing so is privately
worthwhile, a decision that is not influenced by other infected individuals’treatment
decisions. Formally, the lack of strategic interaction follows from the absence of disease
prevalence I(t) in the individual’s maximization problem.

It is notable that under decentralized decision making, each individual’s problem
is wholly independent of the aggregate evolution of the epidemic. Disease prevalence
I(t) only influences susceptible individuals and not infected or recovered individuals.
But the only ones that can actually influence disease prevalence, through the evolution
of disease incidence, are the infected individuals (collectively); and they have no direct
incentive to do so. This observation is the key difference between the outcomes under
centralized and decentralized decision making, which will be explored in detail below.

It is worth emphasizing that herd immunity is a good enjoyed exclusively by sus-
ceptible individuals, but provided by recovered individuals. An added twist is that
under treatment, it is determined by the infected individuals how much of this good
is provided. In other words, the benefits flow from the decisions of individuals in one
class to individuals in another class to which the former can never return (and hence
from which they will themselves never benefit).

To appreciate how ineffi cient equilibrium treatment can be, suppose that treatment
is too costly to be privately optimal but suffi ciently inexpensive for the social planner to
want to treat. Furthermore, suppose S(0) = 1− ε and I(0) = ε, with ε > 0 arbitrarily
small. It is clear that a desirable outcome would involve immediate treatment of the
small group of infected individuals and asymptotic eradication with treatment. Yet
however small ε is, this would not happen in equilibrium.

3.2. Treatment Under Centralized Decision Making. The problem of the
utilitarian central planner is as follows:

max
τ(t)∈[0,1]

∫ ∞
0

e−ρt[S(t)πS + I(t) (πI − τ(t)cT ) +R(t)πR]dt (20)

In the planner’s problem, the policy τ(t) ∈ [0, 1] can interchangeably be thought of as
the proportion of infected individuals who undergo treatment, or as the intensity of
treatment that all individuals are subjected to.

The problem is solved subject to the following laws of motion for the measures of
susceptible, infected and recovered individuals, respectively:
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Ṡ(t) = −βI(t)S(t) (21)

İ(t) = I(t) [βS(t)− αT τ(t)− γ] (22)

Ṙ(t) = I(t) [αT τ(t) + γ] (23)

S(t) = 1− I(t)−R(t) (24)

S(0) = S0 > γ/β, I(0) = I0 ≈ 0, S0 + I0 = 1 (25)

The problem solved by the central planner is similar to that solved by individuals
under decentralized decision making, but there are some notable differences. First, the
planner aggregates the welfare of all individuals into its objective function. Second,
the constraints take into account the fact that the planner directly controls the evo-
lution of the aggregate variables through its choice of aggregate treatment. Therefore
the fractions S(t), I(t) and R(t) are endogenous for the planner, whereas they are
exogenous for any one individual.
In considering the overall effects of treatment, it is useful to make the follow-

ing analogy. Since recovery confers immunity on the (previously infected) individual,
treatment may be interpreted as a kind of immunization at the aggregate level. Immu-
nization transfers susceptible individuals directly into the recovered class; therefore it
dilutes the effects of infection, since the rate of contact between infected and suscepti-
ble individuals is reduced.12 Treatment has a similar effect by transferring individuals
from I(t) to R(t), rather than from S(t) to R(t) as is the case with vaccination. Note,
however, that from the perspective of the particular individual, treatment and vac-
cination are quite different in that the former presupposes that the individual has a
spell of infection, while the latter does not. These differences make optimal treatment
and vaccination policies qualitatively different, as will be discussed further below.
Returning to the characterization of the optimal treatment policy, using that S(t) =

1− I(t)−R(t), the planner’s current-value Hamiltonian can be written as

HC
T ≡ [1− I(t)−R(t)] πS + I(t) (πI − τ(t)cT ) +R(t)πR

+λCT (t)I(t) [β (1− I(t)−R(t))− αT τ(t)− γ]

+µCT (t)I(t) [αT τ(t) + γ] (26)

Note that λCT (t) and µCT (t) are the costate variables associated with the laws of motion
for infected and recovered individuals, respectively. Because of the normalization of
the population size, we can treat this as a maximization problem with only two state
variables, I(t) and R(t).
Differentiating with respect to the treatment rate τ(t) yields the following necessary

Hamiltonian condition for optimality:

∂HC
T

∂τ(t)
= −I(t)

[
cT + αT

(
λCT (t)− µCT (t)

)]
= 0 (27)

This condition equates the marginal social cost of treatment with its marginal social

12This is simply because a number of infected and/or susceptible individuals are matched with
recovered individuals instead of with each other.
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benefit.
The evolution of the multipliers is governed by the following system of differential

equations:

λ̇
C

T (t) = ρλCT (t)− ∂HC
T

∂I(t)

= λCT (t) [ρ+ γ + αT τ(t) + β (2I(t) +R(t)− 1)] (28)

−µCT (t) [γ + αT τ(t)]− (πI − τ(t)cT − πS) (29)

µ̇CT (t) = ρµCT (t)− ∂HC
T

∂R(t)
(30)

= ρµCT (t) + λCT (t)βI(t) + (πS − πR) (31)

From the Hamiltonian condition (27), it follows that the optimal policy is of the bang-
bang type and can be characterized as follows:

Proposition 3. The socially optimal treatment policy under centralized decision mak-
ing is given by

τ(t) = 0 for cT > αT (µCT (t)− λCT (t)) (32)

τ(t) ∈ [0, 1] for cT = αT (µCT (t)− λCT (t)) (33)

τ(t) = 1 for cT < αT (µCT (t)− λCT (t)) (34)

This policy has a nice interpretation. Increasing the treatment rate has two effects,
namely to increase the measure of recovered individuals and to reduce the measure
of infected individuals. The marginal benefit of reducing the measure of infectives
is −λCT (t) ≥ 0, while the marginal benefit of increasing the measure of recovered
individuals is µCT (t) ≥ 0. Thus the expression αT (µCT (t)− λCT (t)) is simply the rate at
which the combined benefits of treatment accrue. The optimal policy is thus dictated
by a comparison of the marginal cost and the marginal benefit of treatment, the latter
of which is a function of the state of the system and thus not constant, as was the case
under decentralized decision making.

3.3. Optimal Treatment Across the Stages of the Epidemic. To understand
how socially optimal treatment changes across the stages of the epidemic, it is instruc-
tive to consider the source of externalities and how the strength of these depend on
the state of the system.
The source of the externalities in this model is the effect that infected individuals

have on the susceptible individuals. Specifically, the externality is that individuals
only care about their own transition from I(t) to R(t), without taking into account
the welfare of individuals in S(t). But note that since the measure of susceptibles
S(t) is monotonically decreasing over time, so are the externalities. This means that
the external effects are strongest at the beginning of the epidemic and then decrease
over time, causing the wedge between private and social values to narrow. In terms of
policy, this means that unless treatment is prohibitively expensive, it will typically be
optimal to treat to the maximal extent possible from the outset. The only remaining
question is then whether the direct private and the external effects remain suffi ciently
high to continue to treat in perpetuity.
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There are in principle two regimes to consider, both starting with a policy of full
treatment. In the first regime, even though treatment is at its maximum level, the
susceptibles decrease over time and converge to some positive limit. In approaching
this limit, the social value of treatment remains suffi ciently high throughout to justify
the cost of treatment. Thus there is in this case no switch in the treatment policy. In
the second regime, the planner also starts out by fully treating anyone who becomes
infected, but now the social value of treatment decreases suffi ciently over time to
become lower than the cost of treatment. Once this happens, it is no longer justifiable
to continue treatment and thus it is discontinued. After this point, the dynamics
mirror those of a standard SIR epidemic (with a suitably modified initial condition).
To summarize, unless treatment is prohibitively expensive, the optimal treatment

policy will start with full treatment and contain at most one switch to no treatment.
Whether there is a switch depends on the biomedical and preference parameters and
on the limiting distribution of the measure of susceptibles S(∞).

3.4. A Simulated Example of Optimal Treatment. To appreciate the charac-
ter of optimal treatment, it is useful to consider a simulated example of the evolution
of the system. Figure 3 illustrates the evolution of S(t), I(t) and R(t) over time. The
solid lines show the paths under optimal treatment, while the dotted lines show the
paths of the uncontrolled system. This allows us to highlight the differences due to
policy intervention. Under socially optimal treatment, the recovery rate at the initial
stages of the epidemic is effectively increased from γ to (γ+αT ). This results in a less
steep increase in prevalence I(t) and as a consequence, a less marked decline in the
susceptibles S(t). The effect on the recovered individuals R(t) is in general ambiguous,
because of two competing effects. On the one hand, there is an increase that stems
from the contribution of treated individuals. On the other hand, there is a decrease
in disease prevalence, which reduces the contribution from natural recovery.
In the figure, it is seen that for the chosen parameterization, the initial treatment

essentially increases the recovery rate, relative to the uncontrolled model. This causes
a decrease in peak prevalence and to an overall delay in the peak of the epidemic.
Across the entire epidemic, the initial phase with treatment reduces the overall number
of infections relative to the no-treatment outcome.
Some sample simulation results are summarized in the lower panel of Table 1. We

find in our simulations that higher treatment costs or lower treatment effi ciency leads
the optimal treatment to stop earlier, relative to the base case. Higher infectiousness
or lower recovery rate also lead to earlier cessation of treatment. In contrast, the
more severe the symptoms of infections become, the longer is the optimal treatment
sustained. Last, if treatment is not started at the outset but delayed till infection has
taken hold, say because treatment was not available at the start of the epidemic, then
the treatment is implemented for a shorter time.

4. Disease Dynamics Under Vaccination
In this section, we turn our attention to equilibrium and to socially optimal outcomes
under vaccination. This will enable us to make a clear comparison with the outcomes
under treatment. As emphasized in the introduction, both treatment and vaccination
work by boosting the mass of recovered individuals, thereby inducing herd immunity
to protect the remaining susceptible individuals. But the similarities turn out to be



Managing Population Immunity 15

Figure 3: Dynamics Under Socially Optimal Treatment.

superficial only. In this section, we show that seemingly subtle differences between
treatment and vaccination have radical effects on equilibrium outcomes and that even
the optimal policies differ qualitatively.

4.1. Vaccination Under Decentralized Decision Making. First, consider the
vaccination problem of individual i ∈ S(t), which is as follows:

max
vi(t)∈[0,1]

∫ ∞
0

e−ρt [QS(t)(πS − vi(t)cV ) +QI(t)πI +QR(t)πR] dt (35)

Here, Qi(t), j = S, I,R is the probability of individual i inhabiting health state j at
time t ≥ 0. The relevant constraints are given by

Q̇S(t) = −QS(t) [βI(t) + αV vi(t)] , QS(0) = 1 (36)

Q̇I(t) = QS(t)βI(t)−QI(t)γ (37)

Q̇R(t) = QS(t)αV vi(t) +QI(t)γ (38)

The current-value Hamiltonian for the individual’s problem can be written as

HD
V ≡ (1−QI(t)−QR(t))(πS − vi(t)cV ) +QI(t)πI +QR(t)πR (39)

+µDV (t) [(1−QI(t)−QR(t))αV vi(t) +QI(t)γ] (40)

+λDV (t) [(1−QI(t)−QR(t))βI(t)−QI(t)γ] (41)

where µDV (t) and λDV (t) are the costate variables for the laws of motion for QR(t) and
QI(t), respectively. Note that because the three state variables in the individual’s
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maximization problem are probabilities and thus have to sum to one, the problem
can be reduced to one with just two state variables QI(t) and QR(t). Differentiating
with respect to the vaccination rate vi(t) yields the following necessary Hamiltonian
condition for optimality:

∂HD
V

∂vi(t)
= QR(t)

[
−cV + αV µ

D
V (t)

]
= 0 (42)

This expression simply equates the marginal cost and marginal benefit of vaccination.
The evolution of the multipliers is given by the following differential equations:

µ̇DV (t) = ρµDV (t)− ∂HD
V

∂QR(t)
(43)

= µDV (t) [ρ+ αV vi(t)] + λDV (t)βI(t) + [πS − πR − vi(t)cV ] (44)

λ̇
D

V (t) = ρλDV (t)− ∂HD
V

∂QI(t)
(45)

= λDV (t) [ρ+ βI(t) + γ] + µDV (t) [αV vi(t)− γ] + [πS − πI − vi(t)cV ] (46)

We can therefore state the following result:

Proposition 4. The equilibrium vaccination policies under decentralized decision mak-
ing are given by

vi(t) = 0 for cV > αV µ
D
V (t) (47)

vi(t) ∈ [0, 1] for cV = αV µ
D
V (t) (48)

vi(t) = 1 for cV < αV µ
D
V (t) (49)

To understand how the individual’s incentives to vaccinate change across the stages
of the epidemic, it is useful to first consider the benchmark studied in Francis (1997)
and Chen and Toxvaerd (2014). First, the incentive to vaccinate is proportional to
the infection hazard, which is itself proportional to disease prevalence. Thus higher
infection levels in the population increases the value of vaccination for the individual.
Suppose now that the vaccine is perfect and that immunity is instantaneous. In this
case, there is no strategic interaction between individuals’vaccination decisions. The
reason is that if people are homogeneous, they all face the same risk and therefore all
vaccinate at the same time. But since vaccination offers perfect immunity, a vaccinated
individual is unaffected by the vaccination decisions of others. In other words, there is
in this case no population immunity in equilibrium. But this is not a robust finding.
As shown in Chen and Toxvaerd (2014), with heterogeneous individuals, some will
decide to vaccinate earlier than others (i.e. have lower critical thresholds of disease
prevalence), and thus the latter benefit from the formers’vaccination.13 Similarly, if
vaccination only confers immunity with a delay, as is the case in the present setup,
then even vaccinating individuals benefit from the vaccination of others till the mo-
ment they become immune themselves. In both cases, equilibrium will involve some
measure of population immunity, although not as much as that induced by a socially

13This point is also made in Fine et al. (2011).
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optimal vaccination policy. As disease prevalence is non-monotone in this model, so
are the incentives to vaccinate. At the start and the end of the epidemic, when preva-
lence is low, so is the private value of vaccination. Thus individuals only vaccinate
when prevalence is suffi ciently high and cease doing so once prevalence has become
suffi ciently low (in case the individual’s vaccination has not yet induced immunity).

4.2. Vaccination Under Centralized Decision Making. Turning to central-
ized decision-making, the planner’s problem can be written as follows:

max
v(t)∈[0,1]

∫ ∞
0

e−ρt[S(t)(πS − v(t)cV ) + I(t)πI +R(t)πR]dt (50)

The relevant constraints are then

Ṡ(t) = −S(t) [βI(t) + αV v(t)] (51)

İ(t) = I(t) [βS(t)− γ] (52)

Ṙ(t) = γI(t) + S(t)αV v(t) (53)

S(t) = 1− I(t)−R(t) (54)

S(0) = S0 > γ/β, I(0) = I0 ≈ 0, S0 + I0 = 1 (55)

Strictly speaking, it is not necessary forR(0) = 0 exactly; we only require that there are
suffi ciently few immune individuals at the outset to make vaccine-induced immunity
socially desirable.

The current-value Hamiltonian for the planner’s problem is given by

HC
V ≡ [1− I(t)−R(t)](πS − v(t)cV ) + I(t)πI +R(t)πR (56)

+µCV (t)[γI(t) + (1− I(t)−R(t))αV v(t)] (57)

+λCV (t)I(t) [β(1− I(t)−R(t))− γ] (58)

Note that µCV (t) and λCV (t) are the costate variables associated with the laws of motion
for recovered and infected individuals, respectively. Because of the normalization, this
can be treated as a maximization problem with only two state variables I(t) and R(t).
Differentiating with respect to the vaccination rate v(t) yields the following necessary
condition for optimality:

∂HC
V

∂v(t)
= S(t)

[
−cV + αV µ

C
V (t)

]
= 0 (59)

This expression simply equates the marginal social cost of increasing the vaccination
coverage with its marginal social benefit. This can be seen from the fact that µCV (t)
measures the social value of a marginal increase in recovered individuals, while αV is
the rate at which vaccination induces immunity.
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The laws of motion for the two costate variables are given by

µ̇CV (t) = ρµCV (t)− ∂HC
V

∂R(t)
(60)

= µCV (t)[ρ+ αV v(t)] + λCV (t)βI(t) + [πS − πR − v(t)cV ] (61)

λ̇
C

V (t) = ρλCV (t)− ∂HC
V

∂I(t)
(62)

= λCV (t)[ρ− β(1− I(t)−R(t)) + γ + βI(t)] (63)

+µCV (t)[αV v(t)− γ] + [πS − πI − v(t)cV ]

We can now state the following result:

Proposition 5. The socially optimal vaccination policy under centralized decision
making is given by

v(t) = 0 for cV > αV µ
C
V (t) (64)

v(t) ∈ [0, 1] for cV = αV µ
C
V (t) (65)

v(t) = 1 for cV < αV µ
C
V (t) (66)

We briefly compare the dynamics under centralized and decentralized decision mak-
ing. Aggregating the laws of motion (36), (37) and (38) across the population, we re-
cover the aggregate laws of motion (51), (52) and (53), respectively. This means that
controlling for aggregate vaccination, the dynamics are exactly the same under both
decision-making assumption. But it is easily verified that the costate variables in the
individual’s problem are different from those of the social planner, because the latter
maximizes aggregate social welfare while the former only maximizes its own well-being.
This means that from a social perspective, the individual does not value vaccination
as much as the planner does and will therefore tend to under-vaccinate. For a detailed
decomposition of such external effects, see Rowthorn and Toxvaerd (2020).

Optimal Vaccination Across the Stages of the Epidemic. To understand
how socially optimal vaccination changes across the epidemic, we again consider the
source of externalities. Under vaccination, the source of externalities is the effect
that vaccinating susceptibles have on other susceptibles. This is because an immune
individual cannot become infected and so cannot pass on infection to third parties.
But whether the immunity of the vaccinated individual actually comes into play at
all depends on disease prevalence (because this is the quantity that determines infec-
tion risk) and so we find that the external effects of vaccination are proportional to
disease prevalence. But as we have already seen, in the SIR model prevalence is non-
monotone, first increasing and then decreasing. This means that the external effects of
vaccination are also non-monotone, first increasing and then decreasing, approaching
zero as the disease dies out. In combination with the bang-bang nature of the optimal
policy, this implies that along an optimal path, there can be as many as two switches
in vaccination policy. Again, there are two regimes to consider. In the first regime,
the value of vaccination is never high enough to merit costly vaccination, even at the
peak of the epidemic. In the second regime, things are more complicated. At initial
stages of the epidemic when infection is negligible, the optimal policy will be to not
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vaccinate anyone (unless it is costless or there is no discounting). As infection picks
up, the social value of vaccinations increases and reaches a point at which it outweighs
the cost of vaccinations. Thus there is a switch in the optimal policy and the planner
then vaccinates as many individuals as possible. Even with full vaccination, infection
may keep rising for a while, if vaccine effect is delayed or confers imperfect protection.
But eventually, disease prevalence will peak and infections start to decrease. At this
point, the social value of vaccination also starts decreasing, slowly approaching zero
as infection dies out. In terms of optimal policy, this implies that there is a point after
which the social value of vaccination is so small that even if there are still remaining
at-risk individuals in the population (who did not achieve immunity during the vacci-
nation drive), it is no longer worthwhile vaccinating them. At this point, there is an
additional switch in the optimal vaccine policy, back to no vaccination.
Note that while the socially optimal treatment policy was different in nature to the

privately optimal treatment decisions under decentralized decision making, this is not
so under vaccination. The difference here is one of degree, not of kind. For an individ-
ual contemplating getting vaccinated, the external effects play no role. Instead, what
will determine the vaccination decision will be the disease risk facing the individual.
But even disregarding the external effects which are central to the socially optimal
policy, the individual disease risks are also proportional to disease prevalence and are
thus also non-monotone. In other words, the main difference between equilibrium and
socially optimal vaccine uptake is that individuals attach a lower value to vaccination
than does the social planner. This is a fairly general insight.
In the special case γ = 0, αV = 1 and πS = πR, it is known that both the the indi-

viduals’privately optimal vaccination decisions and the planner’s optimal policy are of
the bang-bang variety and that their critical thresholds exactly coincide. Equilibrium
in this special case is thus socially optimal and there are neither external effects in
equilibrium nor any herd immunity (see Francis, 1997 and Chen and Toxvaerd, 2014
for a detailed exposition of this property). In the limit, I(∞) + R(∞) = 1, so no-one
benefits from herd immunity.
The threshold property of socially optimal and equilibrium vaccination completely

describe the outcomes in this special case, involving at most one switch from no vac-
cination to full vaccination. This is because if γ = 0, the setup is a modified SI type
model in which disease prevalence I(t) is indeed monotone.14

In the case with γ > 0, I(t) is non-monotone and the optimal policy has only
been partially characterized (see Sethi and Staats, 1978 and Francis, 2007).15 The
optimal policy is still of the bang-bang variety and is never singular (i.e. interior)
for any positive interval of time.16 Furthermore, it is known that there can be at

14Even though the presence of vaccine imperfections and after-effects of infection does modify the
relevant critical thresholds, the monotonicity property of disease prevalence vis-à-vis the recovery rate
γ remains unchanged.
15In Francis (2007), even though γ > 0 and disease prevalence is hump-shaped, equilibrium behav-

iour still exhibits only one switch because vaccination is assumed to yield instantaneous immunity.
This means that as soon as the hazard of infection is high enough, all remaining susceptible indi-
viduals immediately and effectively vaccinate. From their perspective, it is at this point irrelevant
whether aggregate disease prevalence will eventually decrease. When vaccination is imperfect or only
effective with a delay as in the present model, this is no longer the case.
16Sethi and Staats (1978) consider a finite time horizon and focus mostly on the undiscounted case.
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Figure 4: Dynamics Under Socially Optimal Vaccination.

most two switches in policy and that the last switch is always from full vaccination
to no vaccination. So the planner, if it finds it optimal to vaccinate at all, either
vaccinates at the outset and then ceases doing so, or vaccination is initially delayed,
then implemented at full force and then eventually ceased. Despite the diffi culty in
formally characterizing the optimal policy in this case, the main features are intuitively
clear. At early stages of the epidemic, the hazard is moderate and thus it is optimal
not to vaccinate, as is the case when γ = 0. At some point, the optimal policy switches
and full vaccination is implemented. This is done in part with a view to benefit from
herd immunity (i.e. the planner values vaccination higher than do the individuals, who
only maximize their own welfare and disregard the social benefits flowing from their
vaccination). As vaccination is pursued, in conjunction with natural recovery, the mass
of recovered and immune becomes suffi ciently large that the remaining non-vaccinated
susceptibles are effectively protected by herd immunity. At this point, the optimal
policy switches back and no further vaccination is pursued. The fully discounted
problem has received surprisingly little attention. Exceptions include Sethi and Staats
(1978) and Francis (1997, 2007). Of these, none consider imperfect vaccines and only
the latter contribution features spontaneous recovery. It is precisely the combination
of imperfect vaccination and the possibility of spontaneous recovery in our model that
complicates the analysis and prevents us from obtaining further analytical results.

4.3. A Simulated Example of Optimal Vaccination. We now consider a sim-
ulated example of socially optimal vaccination. Figure 4 shows the evolution of the
optimally controlled system in solid lines and of the uncontrolled system in dotted
lines.
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Under socially optimal vaccination, the initial dynamics coincide with those of
the classical uncontrolled model until prevalence I(t) reaches a critical threshold. At
this point, full vaccination is implemented, causing an increase in the measure of
immune individuals R(t). At the same time, the measure of susceptibles S(t) decreases
more sharply from this point onwards (because successfully vaccinated individuals are
drawn from that set of individuals). This means that there are fewer individuals that
can become infected, which explains why the increase in infected individuals I(t) is
attenuated.
It is worth noting that while there is full vaccination of all susceptible individuals,

the number of infections keeps increasing regardless. This is an artefact of the possibil-
ity that the vaccine only confers immunity with a delay. The faster the vaccine works,
the fewer new infections will there be once widespread vaccination is implemented.
Last, note that when infection again falls below some critical threshold, it is optimal
to cease vaccination of any remaining susceptibles. The switches in the optimal vac-
cination policy cause there to be kinks in the curves. These are most visible in the
path of susceptible individuals but can also be found in the paths of the other state
variables.
Overall, vaccination causes peak prevalence to be significantly reduced, and it is

also somewhat delayed. It is also seen that the susceptibles converge to a higher level
under vaccination than under the uncontrolled epidemic, a fact that stems from the
population immunity that the vaccination confers on susceptible individuals.
Next, we will briefly outline the results of our simulations, which are summarized

in the upper panel of Table 1. The table reports results on a number of key outcomes
from a base case and for a number of simulations in which we have varied each of the
parameters relative to the base case.
We see in the simulation results that when the cost of vaccination increases or the

effi ciency of the vaccination decreases, the optimal vaccination policy involves a delay
in vaccination relative to the base case. In contrast, higher infectiousness or a lower
recovery rate, biological measures of a worse infection, both lead to an earlier start
of vaccination. Similarly, the worse the symptoms from infection become, the earlier
should vaccination commence. Last, if vaccination is not started before the infection
has taken hold, say because a vaccine was not yet available at the start of the epidemic,
then the optimal vaccination policy will prescribe that vaccination should be sustained
for a longer period of time.

5. Comparisons to Non-Economic Control
To put this analysis into perspective, we will next consider the typical non-economic
approach to infection control common in the public health and epidemiology literature
and to compare it to the optimal policies characterized in the previous sections. As
noted in the introduction, the mathematical epidemiology literature has featured a
multitude of analyses focused almost entirely around the basic rate of reproduction in
different settings and on how the public health authority may bring about eradication
by influencing this rate. For a discussion of this literature and the central role accorded
to herd immunity and the basic rate of reproduction, see e.g. Fine (1993) and Fine et
al. (2011).
First, recall the special role played by the basic rate of reproduction R0 = β/γ.

For R0 < 1, the disease starts decreasing immediately and dies out over time while for
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R0 ≥ 1, the epidemic takes hold in the population. Perhaps not surprisingly, a large
part of the traditional analysis of disease control takes R0 as the implicit objective
function. We will show how this approach is inconsistent with standard cost-benefit
analysis.

5.1. Vaccinating to Achieve Population Immunity. The textbook analysis of
imperfect (leaky) vaccination argues that if a proportion v ∈ [0, 1] of the population
is immunized, then the basic rate of reproduction changes to

RV0 ≡
[1− αV v]β

γ
= [1− vαV ]R0 (67)

In this equation, one can think of the effectiveness of the vaccine αV ≡ (1− φ), where
φ ∈ [0, 1] is the probability that the vaccine fails or as the fraction of the population
for which the vaccine does not work. In order to force the basic reproductive ratio
below one, the health authority must vaccinate at least a fraction

v ≥ v̄ ≡ R0 − 1

R0αV
(68)

of the population. Indeed, this is the typical policy prescription in most epidemiology
textbooks (see e.g. Keeling and Rohani, 2008). Whether this is feasible depends on
parameter values.
Note that the critical threshold is increasing in the failure probability φ. The

reason is simply that as vaccines become increasingly ineffective in securing immunity,
one must vaccinate a larger proportion of the population to ensure that the needed
proportion of immune individuals in the population is reached.
The weakness of this analysis is that it completely disregards the desirability of

using vaccination at different stages of the epidemic (for the individual or for the
planner) and therefore ignores the important tradeoffs that determine privately and
socially optimal decisions. To make meaningful policy recommendations and sensible
comparisons between instruments, one must explicitly consider the problems faced by
decision makers under centralized and decentralized decision making. Furthermore,
one must fully take into account that any decision, whether on treatment or vaccina-
tion, has both costs and benefits and that these must be appropriately balanced. The
purely mechanistic approach inherent in the R0-focused analysis may lead to socially
undesirable outcomes and simplistic policy recommendations.17

There is a stark contrast between the economic and non-economic control of the
disease, best exemplified by the case of an imperfect vaccine. Under the non-economic
approach, a higher failure rate φ would call for a higher critical vaccination threshold
to be achieved (to ensure eradication). In contrast, the economic analysis shows that a
higher failure rate can be understood as an effective increase in the cost of vaccination
(or as a decrease in the benefits to vaccination), thereby reducing the desirability of

17The treatment of vaccination in Keeling and Rohani (2008) is a good example of the ambiguity
on policy issues in the existing literature. While noting that it may be infeasible to eradicate the
disease through vaccination, they note that some vaccination may still be desirable. Yet, they stop
short of letting the desirability of vaccination be the guiding principle in the formulation of a vaccine
policy.
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vaccination. Thus, ceteris paribus, it is optimal to vaccinate at a lower rate. Intuitively,
similar points would apply for a decrease in treatment effi ciency αT . In a sense, the
non-economic approach confounds feasibility with desirability. Some of these issues
will become apparent in our simulation results that we report in what follows.

While the classical approach identifies the critical threshold of susceptible individu-
als that needs to be immunized in order for infection to start decreasing, it is not clear
about how best to achieve this outcome. There are literally infinitely many ways in
which the outcome can be achieved, but there are two natural candidates that deserve
special attention. These are so-called pulse vaccination and continual vaccination. Un-
der pulse vaccination, a fraction of the susceptible population all receive vaccination
at the same time– say, at the outset of the epidemic– to ensure that the desired level
of immunized individuals comes about. This can also be followed up by additional
pulses as needed to boost the effects of the vaccination. Under pulse vaccination, only
a highly effective vaccine can ensure that the critical level of immunity is achieved in
a single pulse. In contrast, under continual vaccination, a fraction of the population is
immunized over time till the cumulative measure of immunized individuals reaches the
desired level. While neither of these vaccination policies maximize social welfare, it is
interesting to explicitly consider these as they are used extensively in practice. Our
simulations show that a policy of continuous vaccination (described in detail below)
always yields higher social welfare than pulse vaccination. To not unduly stack the
cards against the non-economic approach to vaccination, we will confine our attention
to comparing the economic vaccination policy to the continuous non-economic policy.

In our model, vaccination v(t) is a flow variable indicating the instantaneous rate
of vaccination. We can model the alternative biological approach in flow terms as
follows. Consider the vaccination policy

v(t) =

{
1 for t ≤ t∗

0 for t > t∗
(69)

where t∗ is implicitly defined by
S(t∗) =

γ

β
(70)

We know that
Ṡ(t) < 0 for all t (71)

whereas

İ(t) > 0 for t < t∗ (72)

İ(t) = 0 for t = t∗ (73)

İ(t) < 0 for t > t∗ (74)

This policy is the most effective at curbing the spread of the disease, but it takes no
account of cost and is therefore not optimal in the economic sense. In the Appendix, we
show that this policy achieves the same measure of total vaccinations as the successful
pulse vaccination of a fraction v̄ of the population.

Turning to our simulation results, we report the discounted social welfare under
four different policies, namely (i) the socially optimal one (∗), the continuous biological
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one (B) as just described, a policy of never vaccinating (N) and a policy of always
vaccinating (A). In addition, we indicate the time interval during which the optimal
and the biological vaccination policy is active. The simulation results are reported in
Table 1.
Comparing discounted social welfare levels, we find that there are often substantial

differences. While it is no surprise that welfare is higher under the optimal policy than
under the biological one, it turns out that the latter is sometimes inferior even to the
policies of never vaccinating or always vaccinating. This reinforces the point that the
biological path does not just maximize an ad-hoc objective. In some cases, it is worse
than policies that maximise no objective at all.

5.2. Treating to Achieve Population Immunity. To see what the non-economic
approach would imply for a policy on treatment, suppose that treatment τ ∈ [0, 1] in-
creases the recovery rate to (γ + αT τ), where αT > 0 is the (finite) effi ciency of
treatment. In other words, treatment boosts the patient’s own immune defence and
speeds up recovery. The basic rate of reproduction now changes to

RT0 ≡
β

ταT + γ
(75)

Again, in order to ensure that the disease declines over time, the policy must induce
a reproductive ratio RT0 < 1, which is achieved by permanently treating infected
individuals at some level

τ ≥ τ̄ ≡ β − γ
αT

=
R0 − 1

(αT/γ)
(76)

Since treatment is not infinitely effi cient in inducing recovery, i.e. recovery is not
instant, such eradication may not be feasible as treatment may fail to force RT0 below
one.
For treatment, there is no sensible equivalent to pulse vaccination because there

may not be enough infected individuals initially to achieve the desired threshold of
treatment-induced recovered people. But it is straightforward to replicate the contin-
uous vaccination policy described above in terms of treatment. The policy takes the
form

v(t) =

{
1 for t ≤ t∗

0 for t > t∗
(77)

where
S(t∗) =

γ

β
(78)

As for the vaccination simulations, we compare the four different policies of optimal
treatment (∗), the biologically determined continuous treatment (B) as just described,
the policy of never treating (N) and that of always treating (A). The simulation
results are reported in Table 1.
Again, we find that there are sometimes very substantial welfare losses associated

with the biological approach. In addition, the optimal treatment policy always ceases
treatment before the biological one, emphasizing that the objective is to maximize so-
cial welfare rather than reaching a particular threshold of immune individuals. Again,
we also see that there are cases in which the biological policy is outperformed by the
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policies of never treating or always treating, respectively.

6. Disease-Induced Mortality
In the previous sections, we have assumed that while infection decreases the wellbeing
of an infected individual, it does not lead to death. In this section, we consider the
alternative case in which infected individuals may die from the disease.
First, introduce a new class of deceased individuals, D(t), of measure D(t). Next,

assume that while infected, individuals transition to the deceased class at rate δ ∈
[0,∞). The uncontrolled system is now given by

Ṡ(t) = −βI(t)S(t) (79)

İ(t) = I(t) [βS(t)− γ − δ] (80)

Ṙ(t) = γI(t) (81)

Ḋ(t) = δI(t) (82)

Ṅ(t) = −δI(t) (83)

There are several properties of this extended model that merit comment. First,
note that the population decreases in size over time (as the deceased individuals are
for simplicity not replaced by new births). Second, the qualitative properties of the
dynamics are unchanged. To wit, the basic rate of reproduction is now reduced to
R0 = β/(γ+ δ), with the limiting distribution over classes suitably modified. It is still
the case that limt→∞S(t) > 0, although this quantity must now be interpreted as a
measure rather than as a fraction of the population. The higher the mortality rate δ is,
the fewer susceptible and recovered individuals remain in the limiting distribution.18

We next consider the economic control of this model and assume that the payoff
to a deceased individual is πD = 0. As argued by Gersovitz and Hammer (2004), this
assumption means that the shortfall in welfare for an individual in the deceased class is
the opportunity cost of not earning πI until recovery from the disease and not earning
πR thereafter.
Consider first the problem of an individual under decentralized decision making.

For such an individual, mortality unambiguously increases the cost of infection, thereby
increasing the incentive to vaccinate and treat. Qualitatively, the decentralized prob-
lem remains unchanged. Turning to the centralized problem, mortality has somewhat
more subtle effects. On the one hand, society’s welfare is decreased because the spe-
cific individual passes away, incurring an opportunity cost like that of the individual.
On the other hand, there are additional and countervailing effects of mortality, due
to external effects. When an individual passes away, society loses a current infected
individual who no longer infects others. In determining the overall impact of mortality
on the socially optimal policy on vaccination, one must weigh these different consid-
erations. To the extent that the overall effect on welfare is negative, the qualitative
effects on the optimal vaccination policy are unchanged. In turn, the possibility of

18Note that this is an ‘early death’ model, in which mortality shortens the time spent in the
infectious state. This modeling choice is also made in Gersovitz and Hammer (2004), Getz and Lloyd-
Smith (2005) and Keeling and Rohani (2008). Alternative ‘late death’models, in which recovery time
and time till death are equal, are treated by Keeling and Rohani (2008), Naevdal (2012) and Gallos
and Fefferman (2015). These models are less suitable for the present purposes.
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disease-induced mortality (weakly) increases the value of treatment.

7. Conclusion
In this paper, we have considered the economic control of the classical susceptible-
infected-recovered model of infectious disease. Two costly measures are considered,
namely treatment and vaccination. Treatment increases the rate of recovery and con-
fers immunity from future infection on the recovered individual. We find that in
equilibrium, if the treatment cost is suffi ciently large, individuals adopt socially sub-
optimal treatment policies, leading to too little treatment and recovery. This is because
decentralized and non-cooperative individuals disregard the socially beneficial exter-
nal effects that treatment and recovery have on susceptible individuals (through the
effects of herd immunity). Optimal treatment will (weakly) decrease over time with
at most one switch from full treatment to no treatment.
Vaccination decisions turn out to be different to those of treatment, whether made

by individuals or by a social planner. Individuals will delay vaccination until the
hazard of infection becomes suffi ciently high. While this is also true of the socially
optimal vaccination policy, the vaccination threshold of the planner is typically lower
than the equilibrium threshold. Furthermore, depending on parameter assumptions,
the equilibrium and the socially optimal vaccination policy may involve more than
once switch between no vaccination and full vaccination.
The optimal policy will depend delicately on a combination of biomedical and eco-

nomic (preference) parameters. But the overall nature of the external effects is this.
External effects from treatment are proportional to the measure of remaining suscep-
tibles, while those from vaccination are proportional to disease prevalence. While the
former is monotone, the latter is non-monotone and therefore outcomes under vacci-
nation, in equilibrium as well as under social planning, may involve as many as two
switches.
Looking at the comparisons from a different angle, with vaccination there are cases

in which both the planner and individuals have qualitatively similar behavior, but
where different valuations lead to quantitative differences in outcomes. In contrast,
with treatment, equilibrium behavior differs qualitatively from the socially optimal
policy. The individual’s decision problem is a simple and state independent comparison
of costs and benefits, while that of the planner is a delicate function of the measures
of susceptible, infected and recovered individuals.
Under decentralized decision making no self-interested individual would consciously

contribute towards herd immunity. Having said that, the presence of herd immunity
may well influence individual decision making, as is the case with vaccination when the
population is heterogeneous or when the vaccine confers imperfect protection against
infection.
A topic of both theoretical and practical importance, but which this paper has

not treated, is the equilibrium and the socially optimal combination of treatment and
vaccination. It is immediately clear that treatment and vaccination at different stages
of the epidemic changes the value of such efforts. The simplest case to consider is that of
decentralized decision making. For an individual, treatment is an imperfect substitute
for vaccination, while vaccination is no substitute for treatment (once infected, it
is simply too late to vaccinate). Thus for an infected individual, the presence or
otherwise of vaccination is immaterial and cannot influence the treatment decision.
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Next, consider the effects that the presence of treatment has on the privately optimal
use of vaccination. Whether treatment is available or not, the individual will choose to
vaccinate once the cost of doing so is justified by the expected future cost of infection.
Now, the option to treat infection in the future must decrease the expected future
cost of becoming infected - at least weakly so since the option to treat can always be
rejected. This means that if the individual would choose not to vaccinate without the
option of treatment, then it would continue not to do so with that option present. On
the other hand, an individual who would choose to vaccinate without the possibility
of treatment may or may not choose to do so once treatment becomes an option. It
depends on how much the treatment option lowers the infection cost, relative to the
cost of vaccination. This completes the characterization of the hybrid model under
decentralized decision making.
Next, turn to centralized decision making. Perhaps not surprisingly, this case

poses a significant challenge that will not be taken on here. When studied in isolation,
optimal policy suggests using treatment at early stages, while delaying vaccination
to later stages. Once treatment and vaccination can be combined, it is by no means
clear that their timing would reflect that pattern. Depending on costs, parameters
and initial conditions, it is conceivable that an optimal policy would involve so much
initial treatment that no subsequent vaccination would be desirable.
In this connection it is worth noting that while an individual is always restricted

to vaccination first and then treatment later (if infected), the central planner would
have no such restrictions at the population level. Of course, the same restriction would
apply in vaccinating or treating any given individual, but at the aggregate level, the
planner can make any number of switches between combinations of vaccination and
treatment across the stages of the epidemic.
There are some overall lessons to be learned from the present analysis. First,

rather than focusing on the mechanics of population immunity and on bringing down
the basic rate of reproduction, optimal treatment and vaccination policy should be
formulated with a view to optimally trade off costs and benefits of each intervention.
Once this has been achieved, it emerges endogenously whether and the extent to which
herd immunity plays a role in the optimal policy. Second, it is not always optimal to
suppress infection by lowering the basic rate of reproduction. This follows from the
simple observation that under certain circumstances, the costs of suppressing infection
(by lowering the basic rate of reproduction) outweigh the social benefits of doing so.
Third, the intensity of optimal interventions may well vary across different stages of the
epidemic in non-obvious ways. In particular, depending on the available tools, optimal
intervention may be either front-loaded or back-loaded. This finding contrasts with the
common assertion in the public health literature that interventions such as vaccination
should be made earlier rather than later in order to maximize impact.
It is worth emphasizing the importance of properly formulated policy in the man-

agement of epidemics through pharmaceutical interventions (once and if they become
available). This is relevant not only for the COVID-19 epidemic but also for other
diseases that fit the present framework such as H1N1, seasonal influenza, hepatitis B,
norovirus, pertussis (whooping cough) and a host of other viral and bacterial infec-
tions.19 The tools available for a health authority depends on the specific infectious

19While for some of these diseases acquired immunity is not permanent, the model is still appro-
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disease at hand. Unfortunately, there are many vaccine-preventable diseases for which
there are no effective treatments available. Similarly, there are many treatable diseases
for which there are no viable vaccines. This paper has taken a first step towards char-
acterizing equilibrium behavior and optimal policy to control population immunity
when either of these instruments is available.

priate for the study of a single outbreak.
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A. Simulation Results

For the simulations, we used a fourth order Runge-Kutta method. The notation for
the parameters (γ, ρ, πS , πI , πR, I0, S0, R0, αV , αT , cV , cT ) are set out in the text. T
denotes the time horizon used in the simulations. The values W ∗

k and W
B
k , k = V, T

denote discounted social welfare under the optimal policy (∗) and the biological policy
(B), respectively. The values WN

k and WA
k , k = V, T denote the discounted social

welfare under the policies of never (N) or always (A) using the instrument k. Last, ∆∗k
and ∆B

k , k = V, T denote the time interval during which the relevant intervention is
being applied. The values for ρ, β, γ are chosen to be in line with those for COVID-19
for the vaccination simulations (see e.g. Giannitsarou et al., 2020), but the remaining
parameters were chosen for purposes of illustration of specific points. Since we are
interested in exploring the structural properties of socially optimal treatment and vac-
cination across a range of infectious diseases, we have chosen parameters to showcase
the most interesting cases, namely those where there are most shifts in the optimal
policies. For the treatment simulations, we have chosen parameters β, γ that yield a
somewhat higher rate of reproduction than for COVID-19, but quantitatively similar
results can be obtained by setting a lower rate of reproduction but changing other pa-
rameters, e.g. by increasing the cost of treatment. In order to do a careful calibration
to COVID-19, we would need additional information not yet available, namely the
biomedical properties of treatment and vaccine effi ciency and their associated costs.

B. Continuous Non-Economic Vaccination

Since v(t) = 1 for t ≤ t∗, we can write the evolution of susceptibles as

Ṡ(t) = −S(t) [βI(t) + αV ] for t ≤ t∗ (84)

For small values of I(t), this equation can be approximated as

Ṡ(t) = −αV S(t) (85)

which has the solution
S(t) = S0e

−αV t (86)

Suppose that R0 = 0 and that I0 is vanishingly small. Then S0 ≈ 1 and hence

S(t) ≈ e−αvt (87)

Since S(t∗) = γ/β, it follows that

γ

β
= e−αV t

∗
(88)

Thus we find the switching time as

t∗ = − 1

aV
ln

(
γ

β

)
(89)

This is an accurate approximation of the dynamics for small values of I0. Next,
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the ratio of vaccinations to the initial population of susceptibles is in general equal to

ṽ =

∫∞
0
v(t)S(t)dt

S0
(90)

In the case we are considering, we get

ṽ =

∫ t∗
0
S0e

−αV tdt

S0
(91)

=

∫ t∗

0

e−αV tdt (92)

=
1

αV

(
1− e−αV t∗

)
(93)

=
1

aV

(
1− γ

β

)
(94)

=
R0 − 1

R0αV
= v̄ (95)

Thus with the suggested version of continuous vaccination, the non-economic ap-
proach induces the same total number of vaccinations as under the pulse vaccination
of the critical threshold, but it achieves this by spreading vaccinations out over time
rather than doing it instantaneously at the outset.

Incidentally, the continuos vaccination method allows for vaccinating the same
person more than once (if missed or failed in initial rounds) and is therefore compatible
with ṽ > 1. The same could be true in the pulse vaccination case, if we were to allow
for instantaneous repeat vaccinations.
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