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Abstract 

Digitisation makes possible both increased productivity and improved energy efficiency in the 
transport sector, yet the sector has contributed to the productivity growth slowdown since the 
mid-2000s. This paper investigates the impact of investment in information and communication 
technology (ICT) capital on productivity and energy efficiency in the transport sectors of 20 
Organisation for Economic Co-operation and Development (OECD) countries over the period 
1995 – 2019. We find that greater ICT investment significantly boosts productivity across all 
measures, and particularly energy productivity. An increase in the ICT capital share in total 
capital from 10% to 11% boosts labour productivity level by about 1%, and energy productivity 
level by almost 1.5%. Investment in hardware drives productivity, while software investment 
plays a dominant role in energy productivity gains. However, these impacts were stronger 
before 2008. Our findings highlight the importance of continuous ICT investment, 
complementary human capital, and policy frameworks that encourage digital transformation in 
the transport sector. 



 

1 Introduction 

The widespread slowdown in productivity growth since around 2008 (Figure 1) among the 
advanced economies has been intensively studied. It is considered a puzzle because it has 
coincided with continuing or accelerated progress in digital technologies. One of the primary 
drivers of productivity growth is technological innovation and adoption (e.g., Aboal and Tacsir 
(2018); Brynjolfsson et al. (2019); Liu and Saam (2022); Banday and Erdem (2024)). The US 
economy, exceptionally, experienced an increase in productivity growth (Inklaar et al., 2005; Dahl 
et al., 2011; Cardona et al., 2013). One potential explanation for the divergence between the US 
and European economies is strong American investment into ICTs (Van Ark et al., 2008; Bloom et 
al., 2012; Biagi, 2013; Cardona et al., 2013; Mohnen et al., 2019). In particular, sectors that are 
ICT intensive account for most of the observed rise in US productivity (Dahl et al., 2011; 
Ceccobelli et al., 2012; Cardona et al., 2013; Acharya, 2016). 

 

Figure 1: Growth of productivity (output per hour worked) in major economies, 1970 – 2022. 
Lines represent a five-year moving average (OECD, 2024). 

ICTs include computing equipment (e.g., laptops, tablets), communication devices (e.g., networks, 
smartphones), software, data storage, and network infrastructure, as well as more recent 
technologies, such as artificial intelligence (AI), blockchain, cloud computing, internet of things, 
or edge computing. These technologies allow for the potential simplification of complex tasks, 
bringing greater efficiency, faster decision-making, lower transaction costs, and increased market 
competition (Litan and Rivlin, 2001; Aboal and Tacsir, 2018; Lahouel et al., 2021; Banday and 
Erdem, 2024). For example, according to Gal et al. (2019), a 10-percentage point (p.p.) increase 
in adoption of cloud computing across a sector leads to a 3.5% increase in productivity of an 
average European firm after five years. Furthermore, ICTs as general-purpose technologies spur 
further complementary innovations across the economy (Ceccobelli et al., 2012; Jung et al., 2013; 
Arendt and Grabowski, 2017; Elstner et al., 2022; Schwark and Tryphonides, 2025). However, ICTs 
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also require complementary investments in worker skills, and organisational expertise (Timmer 
et al., 2010; Díaz-Chao et al., 2015). 

In this context we consider the transport sector,1 which is an important input into other sectors 
of the economy and plays a key part in global supply chains. Evidence for the US from the late 
1990s attributed much of the surge in productivity then to ICT-driven improvements in logistics 
in domestic and global supply chains (Lewis et al., 2001). However, sectoral decompositions 
indicate that the transport sector has contributed substantially to the post-2008 productivity 
slowdown (Coyle and Mei, 2023). It is also one of the least digitised sectors in the economy. Only 
about 64% of European Union (EU) firms in the transport sector use advanced digital 
technologies, the lowest percentage of all industries, except for the tourism (61%) and 
construction (52%) sectors (EIB, 2023). Digitisation could not only increase productivity, but also 
help with other challenges faced by the transport sector, particularly climate change 
(Leviäkangas, 2016; Mandys and Taneja, 2024). The transport sector represented over 23% of 
global greenhouse gas (GHG) emissions in 2022, second only to electricity and heat generation 
(IEA, 2024). In developed countries the transport sector is in fact the biggest contributor to GHG 
emissions, at 28% in the US and 26% in the EU (Department for Transport, 2023; EPA, 2024). 
Greater digitisation has shown the potential to reduce overall energy use, and therefore lead to 
lower GHG emissions (Bastida et al., 2019; Haben et al., 2021; Taneja and Mandys, 2024). 
Consequently, ICT adoption in the transport sector could contribute to both swifter productivity 
growth and reaching net-zero emissions by 2050. 

There is limited literature on technology and productivity in the transport sector. Our contribution 
in this paper is to estimate the impact of digitisation on labour productivity and Total Factor 
Productivity (TFP) in the transport sector across 20 OECD countries from 1995 to 2019. We also 
examine how greater adoption of ICTs influences energy productivity in the sector. We construct 
a panel dataset from several sources, covering 20 OECD countries for the period 1995–2019. We 
also examine how the impact of ICTs in the sector varies across countries. To the best of our 
knowledge, our paper is the first to examine this key sector using several different productivity 
measures and more recent data. 

We find that higher ICT capital investments significantly boost TFP, labour productivity, and 
energy productivity in the transport sector. An increase of ICT capital share in total capital from 
10% to 11% raises labour productivity level by 1% and TFP by 0.1%, while the impact on energy 
productivity level is 1.5%. Disaggregated estimates reveal that hardware drives most of the gains 
in labour productivity and TFP, while software investment drives improvements in energy 
productivity. We identify 2009 as a structural break, after which the positive impact of ICT capital 
decreases in size. We also show that high-productivity and low-transport-intensity countries in 
particular benefit from ICT investments. Counterfactual analyses show that if ICT investment 
(growth in ICT share) was larger by 1% since 1995, the levels of labour and energy productivity 
would be 4 p.p. and 6 p.p. higher by 2019, respectively. These findings highlight the importance 
of continuing ICT investment for persistent productivity and energy saving effects. 

 
1 We construct the transport sector from five subsectors: manufacture of transport equipment, land transport, water 

transport, air transport, and warehousing and storage. 
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2 Context 

There was considerable investment in ICTs before the financial crisis, with the average share of 
ICT capital in total capital doubling from 4.5% to almost 9% on average across the Group of 7 
(G7) economies (Figure 2). However, over the decade after the financial crisis, the ICT share 
increased considerably more slowly. This slower pace of investment occurred despite the 
implementation of many policies to promote the uptake of digital technologies over this period. 
For example, the e-Japan Strategy was implemented in 2001 with subsequent updates; Germany 
introduced the Breitbandstrategie in 2009, bringing large public and private investments in 
internet infrastructure. A similar policy was adopted by the US in 2010 – the National Broadband 
Plan, and by France in 2013 – the Plan France Très Haut Débit. Similarly, the EU implemented 
several policies and strategies to increase and harmonise the uptake of digital technologies 
across Europe. 

 

Figure 2: Growth of the share of ICT capital in total capital in major economies, 1995–2019 
(authors’ own work). 

There is by now a rich literature estimating the impact of ICT investment on productivity and 
economic growth. Researchers generally found a positive impact of ICTs in the 1990s (e.g., 
Brynjolfsson and Hitt (1996); Lehr and Lichtenberg (1999); Sichel (2001)). Oulton (2002), focusing 
on the UK between 1989 and 1998, found that ICT has a positive and increasing impact on 
economic growth, contributing about a fifth of overall GDP growth. Similarly, Becchetti et al. 
(2003) explored the effect of ICT investment on productivity in Italian firms (1995 – 1997), 
concluding that communication devices contribute to the creation of new products and process, 
but it is software and human capital that raise labour productivity. 
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Several EU and non-EU countries were analysed by Van Ark and Piatkowski (2004) during the 
1990s, using growth accounting. The results suggested that ICTs had a comparable impact on 
productivity growth in both country groups, and this was mainly driven by the manufacturing 
industries. A comparison between EU countries and the United States (US) was done by each of 
Inklaar et al. (2005), Matteucci et al. (2005), and Timmer and Van Ark (2005). All three papers 
concluded that ICT investments had a considerably stronger impact on productivity in the US in 
the 1990s, compared to the EU. Timmer and Van Ark (2005) concluded that the US lead in 
productivity growth over the EU was primarily caused by stronger ICT capital deepening and ICT-
goods production. 

Focusing on the impact of disaggregated ICT capital, Papaioannou and Dimelis (2007) found a 
significant effect only for hardware and communication devices, not for software. Similarly, 
Spiezia (2013) found that ICT investments add between 0.4% and 1% extra value-added growth, 
with computing equipment providing the largest contribution. Analysing the impact of 
disaggregated ICTs in the Netherlands, Borowiecki et al. (2021) discovered that hardware 
investments have a strong positive impact on productivity, but software investments benefit 
particularly low-productivity firms. 

While most authors found that digitisation has a significant positive effect on productivity, as is 
also confirmed by the literature reviews of Cardona et al. (2013) and Biagi (2013), several papers 
have found a partially negative impact for specific periods. For example, Pohjola (1998) found a 
generally negative relationship between productivity and ICT investments in the US in the 1980s 
and early 90s (Kenny, 2003). A similar conclusion was reached by Van Ark and Inklaar (2006), 
finding a negative effect of ICT investment on TFP growth during the 1980s, both in Europe and 
the US. Nevertheless, the authors also found that this is a temporary impact, and the effect of ICT 
returns to being positive after several years. A potential explanation of this finding may be the 
investments into human and knowledge capital, that have immediate costs but delayed results. 
The same conclusion was also reached by Liao et al. (2016) and Kallal et al. (2021). 

Turning to the transport sector specifically, there are few studies. A positive impact of software 
on labour productivity in the transport sector was found by Vu and Hartley (2022). Looking at the 
impact of digitisation in the Finnish transport sector, Leviäkangas (2016) found only a weak 
positive correlation between ICTs and productivity. 

The literature on energy productivity is also relatively sparse. Honma and Hu (2009) use 1993 – 
2003 data for Japan to compute a novel total-factor energy productivity change index. The results 
showed an annual 0.2% rise in total-factor energy efficiency over the period examined. More 
recently, Parker and Liddle (2017) examined the dynamics of energy productivity across 61 OECD 
countries, between 1980 and 2009. While results differed across country groups, more advanced 
technology and greater investment contributed to higher energy productivity. The impact of ICTs 
on green TFP was analysed by Wang and Guo (2023). By applying a Chinese panel dataset from 
2008–2019 to a spatial Durbin model, the authors confirmed that ICTs can promote local green 
TFP, but may have a negative effect on surrounding cities. Similarly, using the data from G7 
economies between 1990 and 2020, Ullah et al. (2023) demonstrate that environmental ICT 
innovations may contribute towards energy transition and productivity. The relationship between 
ICT, productivity, and CO2 emissions was analysed by Lahouel et al. (2021). The results indicated 
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that ICT investments can not only promote economic growth, but also reduce emissions (Haben 
et al., 2021; Taneja and Mandys, 2022, 2024). 

To the best of our knowledge, we are the first to analyse the impact of various ICT investments 
on the transport sector, using several different measures of productivity and energy productivity. 

3 Data 

We constructed a panel dataset from four different sources: the latest data from EU KLEMS2, the 
Groningen Growth and Development Centre productivity database, the International Energy 
Agency (IEA) energy prices data, and the IEA extended world energy balances. We construct key 
variables, creating a panel dataset for 5 transport subsectors, 25 years (1995–2019), and 20 OECD 
countries. We also collected supplementary data from the OECD, the World Bank, and the US 
Bureau of Economic Analysis, for control variables. We take advantage of the panel structure of 
the multi-country and sector dataset, allowing us to control for country, sector, and time-specific 
unobserved fixed effects. We are able to explore the effect of ICTs on productivity within 
transport sub-sectors separately from any changes in market or firm structures. While all our 
countries are members of OECD, their ICT adoption levels are unlikely to be similar (Krutova et 
al., 2022; Banday and Erdem, 2024). As seen in Table 1, some countries, such as Sweden, 
Denmark, or Finland, are significantly more digitised than others such as Italy or France (Biagi, 
2013; European Commission, 2024). We would expect the impact of digitisation may vary across 
different countries. 

The transport sector is composed of five subsectors: vehicle manufacturing (which includes 
manufacture of motor vehicles, trailers, semi-trailers, and other transport equipment), land 
transport (including rail transport, road transport, and transport via pipelines), water transport 
(including sea and coastal transport, and inland water transport), air transport (including 
passenger and freight air transport, and space transport), and warehousing (includes support 
activities, storage, and cargo handling). 

The dataset covers 20 OECD countries, namely Austria, Belgium, Czech Republic, Denmark, 
Finland, France, Germany, Hungary, Italy, Japan, Latvia, Luxembourg, Netherlands, Portugal, 
Romania, Slovakia, Spain, Sweden, UK, and the US. In terms of variables, the dataset includes 
different measures of productivity, ICT capital, national accounts data, human capital, trade and 
openness, and others such as infrastructure, research and development (R&D), and energy use 
and prices. 

 

 

 
2 EU KLEMS is an industry level international dataset. EU KLEMS stands for EU level analysis of capital (K), labour 

(L), energy (E), materials (M), and service (S) inputs. 
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Table 1: Rankings of European Union countries by extent of digitisation, 2024 (European 
Commission, 2024). 

Country 
ICT 

graduates 

High-speed 
internet 

subscription 

SMEs with 
basic digital 

intensity 

Use of 
AI 

Use of 
cloud 

computing 

Digital 
public 

services 
Average 

Sweden 7 3 2 10 3 4 4.8 
Denmark 9 6 5 1 2 9 5.3 
Finland 4 20 1 2 1 5 5.5 
Luxembourg 2 7 14 3 19 3 8.0 
Netherlands 19 10 3 5 5 8 8.3 
Belgium 23 9 6 4 9 11 10.3 
Spain 15 2 11 11 23 10 12.0 
Germany 10 21 9 7 13 18 13.0 
Hungary 5 5 18 24 14 20 14.3 
Austria 13 23 13 9 16 14 14.7 
Portugal 24 4 17 14 20 12 15.2 
Latvia 12 11 23 22 22 6 16.0 
Italy 26 13 10 19 6 23 16.2 
Czech Republic 11 24 22 16 17 16 17.7 
Romania 6 1 27 27 26 27 19.0 
France 21 16 19 17 24 21 19.7 
Slovakia 18 22 25 15 21 22 20.5 
Note: The numbers represent the ranking of each country for each particular category out of the 
27 member countries of the European Union. The final column is a simple average of the six 
digitisation columns. 

The primary source is the latest release of the EU-KLEMS productivity database, specifically the 
EU-KLEMS & INTANProd 2025 Release, which contains key information about the inputs and 
outputs of different countries and sectors, for the period 1995–2021 (Bontadini et al., 2023). 
Within EU-KLEMS, we extract data from the national accounts, the capital accounts, and the 
growth accounts. The accounts provide information on variables such as gross output, value 
added, intermediate inputs, labour compensation, number of employees, hourly wage, and factor 
prices. The accounts also include information on ICT capital services, and their disaggregation 
into computing equipment, communication devices, and software. These capital variables 
represent the different measures of digitisation. Furthermore, we also take additional variables 
from EU-KLEMS including non-ICT capital services, measures of R&D capital, as well as transport 
equipment. Furthermore, a variable labelling each country-sector combination is constructed, 
controlling for country and sector fixed effects, while a “year” variable controls the time fixed 
effects. The dependent, independent, and control variables are also converted into natural 
logarithms before the regression analysis. Further detail on data construction and descriptive 
statistics is given in the Appendix. 

We estimate two measures of productivity and two measures of energy productivity: labour 
productivity (gross value added per employee), TFP (using the method of Levinsohn and Petrin 
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(2003)), energy productivity (gross value added per unit of energy cost), and the Malmquist energy 
productivity index, estimated using data envelopment analysis. All the productivity variables are 
transformed into an index, where the base year is 1995. Figure 3 portrays the four measures of 
productivity and energy productivity in the transport sector, between 1995 and 2019. All four 
productivity measures have been increasing throughout the period examined; nevertheless, the 
slowdown after the 2008 financial crisis is evident. Labour and energy productivity grew by about 
3.6% per year respectively, from 1995 until the financial crisis. However, from 2008 to 2019, the 
annual growth was 1.2% for labour productivity and 2.6% for energy productivity. TFP and the 
Malmquist energy productivity index show a similar pattern. 

 

 (a) (b) 

Figure 3: (a) Overall productivity, and (b) energy productivity in the transport sector, 20 OECD 
countries, 1995–2019 (authors’ own work). 

We then estimate the impact of ICTs on the different measures of productivity using a logarithmic 
weighted panel fixed effects model. We also identify a time structural break in the data to 
examine the impact of ICTs over time. We distinguished countries by productivity levels, and by 
transport intensity levels. Furthermore, we conducted several counterfactual tests to identify the 
potential ICT impact on productivity if ICT investments had been higher or lower over the past 
decades. Lastly, we also perform a series of robustness checks (including for endogeneity using 
system generalised method of moments (GMM)), shown in the Appendix. 

The key independent variable is the ICT capital share, in total and disaggregated into computing 
equipment, communication devices, and software. We define this as the share of ICT capital in 
total capital, where total capital is the sum of ICT capital and non-ICT capital. The disaggregated 
ICT variables are constructed in a similar manner. 

A range of factors are controlled for in our estimates, including human capital variables, such as 
the share of high-skilled workers and the share of females in the workforce. The share of high-
skilled workers is defined as the share of the workforce that has tertiary education, similarly as 
in Audretsch and Belitski (2020). A greater share of highly skilled workers may positively impact 
productivity, due to the greater ability of the workers (Cette et al., 2022; Banday and Erdem, 
2024). The share of females may act as a proxy for labour market flexibility or average 
management quality, for example. The levels of transparency and restrictiveness for Foreign 
Direct Investment (FDI) are included as well. The transparency indicator reflects the perception 
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of the degree of corruption in each country and year. The countries are divided into three groups, 
from lowest transparency (value of 1) to highest transparency (value of 3). The FDI restrictiveness 
variable measures the strictness of a country’s FDI rules on a scale of 0 to 1, looking at foreign 
equity restrictions, discriminatory screening, restrictions on key foreign personnel, and 
operational restrictions. There is evidence that higher transparency and lower FDI restrictiveness 
may contribute to productivity growth (Del Mar Salinas-Jiménez and Salinas-Jiménez, 2007; 
Beverelli et al., 2017). These control variables are expected to have a significant impact on 
productivity, both intuitively and based on past literature. For example, importance of education 
and human capital was pointed out by Cette et al. (2022) and Banday and Erdem (2024). Similarly, 
previous research found significant results for trade (e.g., Solarin (2016)), as well as R&D capital 
(e.g., Cette et al. (2017)). 

We further aimed to capture the effect of exports, infrastructure, transport equipment, and R&D 
capital. The export variable is defined as the share of exports in GDP, while transport equipment 
and R&D capital are measured in per capita terms. We expect these factors to have a positive 
impact on productivity, where the importance of R&D capital was confirmed by several previous 
studies (Cette et al., 2017; Pieri et al., 2018). Greater trade openness brings new expertise, 
increased competition, and encourages firms to adopt modern technologies (Solarin, 2016; 
Banday and Erdem, 2024). The infrastructure variable is defined as the total length of land3 

infrastructure (motorways and railways) per thousand km2, for each country. While intuitively 
positive, the impact of infrastructure on productivity is mixed in the prior literature (Deng, 2013). 

In addition, we also include the impact of energy by controlling for energy prices. The energy 
prices are calculated from electricity and non-electric energy prices, weighted by the energy use 
of each energy type. For electricity prices, the total industrial sector prices are used, while for 
non-electric energy prices, the following steps are taken. For oil price, the high sulphur oil price 
is used, and if this is not available in the data, the low sulphur or light oil prices are used. 
Similarly, for gas price, natural gas is used, and replaced by liquefied petroleum (LP) gas if needed. 
Auto diesel price is used for petroleum, and replaced by various types of gasoline if needed. And 
lastly, steam coal price is used for coal, and replaced by coking coal if needed. A weighted average 
energy price is then calculated from these individual energy prices, weighted by each energy 
type’s consumption. 

4 Method 

Labour productivity is defined as a simple ratio of total value added in real terms to the total 
number of employees in each country-sector: 

𝐿𝐿𝑃𝑃𝑖𝑖𝑖𝑖 =
𝑉𝑉𝐴𝐴𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝐸𝐸𝑖𝑖𝑖𝑖
(1) 

 
3 Infrastructure for water transport (length of waterways) and air transport (number of commercial airports) was 

also considered. However, these were not included in the estimations, as their variability throughout the years was 
negligible, preventing any meaningful analysis. 
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where 𝐿𝐿𝑃𝑃𝑖𝑖𝑖𝑖  is labour productivity of country-sector i in year t, 𝑉𝑉𝐴𝐴𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is real value added, and 𝐸𝐸𝑖𝑖𝑖𝑖  

is the number of employees. 

For TFP, we follow the approach of Levinsohn and Petrin (2003), which addresses the simultaneity 
problem, i.e., the correlation between inputs and unobservable productivity shocks. Compared to 
e.g., Olley and Pakes (1992) who rely on the use of investment data, Levinsohn and Petrin (2003) 
instead use the data for intermediate inputs. The aim is to avoid the empirical problem of zeroes 
present in investment data, taking advantage of intermediate inputs not being a state variable 
and being proxy for productivity shocks (Audretsch and Belitski, 2020). We define the base 
productivity function as: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖𝑓𝑓(𝐿𝐿𝑖𝑖𝑖𝑖 ,𝐶𝐶𝑖𝑖𝑖𝑖,𝐾𝐾𝑖𝑖𝑖𝑖 ,𝑀𝑀𝑖𝑖𝑖𝑖),     𝑖𝑖 = 1,2, … ,𝑁𝑁,     𝑡𝑡 = 1,2, … ,𝑇𝑇 (2) 

where 𝑌𝑌𝑖𝑖𝑖𝑖 is the gross output of country-sector i in the year t, 𝐴𝐴𝑖𝑖𝑖𝑖  is the level of technology (TFP), 
𝐿𝐿𝑖𝑖𝑖𝑖 represents labour, 𝐶𝐶𝑖𝑖𝑖𝑖 is ICT capital, 𝐾𝐾𝑖𝑖𝑖𝑖 is non-ICT capital, 𝑀𝑀𝑖𝑖𝑖𝑖 are intermediate inputs (i.e., 
materials), N is the total number of country-sector combinations, and T is the total number of 
years. 

We assume that labour and intermediate inputs adjust freely to shocks, while capital is a quasi-
fixed (state) input. In logarithmic form: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (3) 

Above, 𝜔𝜔𝑖𝑖𝑖𝑖  and 𝜀𝜀𝑖𝑖𝑖𝑖 are errors, with 𝜔𝜔𝑖𝑖𝑖𝑖 being a state variable (affecting input decisions) and 𝜀𝜀𝑖𝑖𝑖𝑖 
being an i.i.d. variable (no impact on input decisions). We assume that after a productivity shock, 
intermediate inputs 𝑚𝑚𝑖𝑖𝑖𝑖 are adjusted immediately, based on the demand function: 

𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑖𝑖(𝜔𝜔𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑖𝑖 ,𝑘𝑘𝑖𝑖𝑖𝑖) (4) 

It is also assumed that the levels of capital 𝑐𝑐𝑖𝑖𝑖𝑖 and 𝑘𝑘𝑖𝑖𝑖𝑖 are decided at time 𝑡𝑡 − 1, and that the 
function 𝑚𝑚𝑖𝑖𝑖𝑖 is monotonic in 𝜔𝜔𝑖𝑖𝑖𝑖. Due to the monotonicity, we can invert equation 4: 

𝜔𝜔𝑖𝑖𝑖𝑖 = 𝜔𝜔𝑖𝑖𝑖𝑖(𝑚𝑚𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑖𝑖 ,𝑘𝑘𝑖𝑖𝑖𝑖) (5) 

Substituting into equation 3, our model becomes: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 + 𝜑𝜑𝑖𝑖𝑖𝑖(𝑚𝑚𝑖𝑖𝑖𝑖, 𝑐𝑐𝑖𝑖𝑖𝑖 ,𝑘𝑘𝑖𝑖𝑖𝑖) + 𝜀𝜀𝑖𝑖𝑖𝑖 (6) 

𝜑𝜑𝑖𝑖𝑖𝑖(𝑚𝑚𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑖𝑖𝑖𝑖(𝑚𝑚𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑖𝑖 ,𝑘𝑘𝑖𝑖𝑖𝑖) 

where the expression 𝜑𝜑𝑖𝑖𝑖𝑖 can be treated as a control that accounts for productivity shocks. 

Following Levinsohn and Petrin (2003), equation 6 can then be estimated in two stages. First, we 
use a non-parametric approach to obtain an estimate of 𝛽𝛽𝑙𝑙 . The expression 𝜑𝜑𝑖𝑖𝑖𝑖   is typically 
approximated using a low-order polynomial in 𝑚𝑚𝑖𝑖𝑖𝑖, 𝑐𝑐𝑖𝑖𝑖𝑖, and 𝑘𝑘𝑖𝑖𝑖𝑖, with equation 6 estimated by 
regressing output on labour and the polynomials. Second, a moment-based estimation is used to 
get the remaining parameters. If it is assumed that 𝜔𝜔𝑖𝑖𝑖𝑖  follows a first-order Markov process and 
that 𝑐𝑐𝑖𝑖𝑖𝑖 and 𝑘𝑘𝑖𝑖𝑖𝑖 do not adjust immediately to productivity shocks defined as: 
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𝜉𝜉𝑖𝑖𝑖𝑖 = 𝜔𝜔𝑖𝑖𝑖𝑖 − 𝐸𝐸[𝜔𝜔𝑖𝑖𝑖𝑖|𝜔𝜔𝑖𝑖𝑖𝑖−1] (7) 

then we can define output without labour contribution as: 

𝑦𝑦𝑖𝑖𝑖𝑖∗ = 𝛽𝛽0 + 𝛽𝛽𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 + 𝐸𝐸[𝜔𝜔𝑖𝑖𝑖𝑖|𝜔𝜔𝑖𝑖𝑖𝑖−1] + 𝜀𝜀𝑖𝑖𝑖𝑖∗ (8) 

𝜀𝜀𝑖𝑖𝑖𝑖∗ = 𝜉𝜉𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 

Assuming 𝐸𝐸[𝑚𝑚𝑖𝑖𝑖𝑖−1𝜀𝜀𝑖𝑖𝑖𝑖∗ ] = 0, the remaining parameters can be identified. Therefore, this two-stage 
semi-parametric approach yields consistent estimates of the production function coefficients and 
allows recovery of TFP by taking the difference between observed output and the fitted 
contributions of labour, ICT capital, and non-ICT capital. 

The third productivity variable, energy productivity, is defined as the ratio between real value 
added and real energy compensation (energy price and consumption): 

𝐸𝐸𝑃𝑃𝑖𝑖𝑖𝑖 =
𝑉𝑉𝐴𝐴𝑖𝑖𝑖𝑖

𝐸𝐸𝐶𝐶𝑖𝑖𝑖𝑖 ⋅ 𝐸𝐸𝑃𝑃𝑖𝑖𝑖𝑖
(9) 

Where 𝐸𝐸𝑃𝑃𝑖𝑖𝑖𝑖 is energy productivity of country-sector i in year t, 𝑉𝑉𝐴𝐴𝑖𝑖𝑖𝑖 is real value added, 𝐸𝐸𝐶𝐶𝑖𝑖𝑖𝑖 is 
total energy consumption, and 𝐸𝐸𝑃𝑃𝑖𝑖𝑖𝑖 is total energy price. Total energy consumption is calculated 
by adding the usage of all energy types, i.e., electricity, oil, gas, petroleum, coal, and other. 
Similarly, total energy price is constructed as the weighted average of individual energy prices, 
weighted by each energy’s use. Therefore, the energy productivity variable measures how much 
value added (in 2017 $) each unit of energy value provides. 

Lastly, for the calculation of the fourth productivity variable, the Malmquist energy productivity 
index, we use non-parametric data envelopment analysis (DEA (e.g., Zhou et al. (2012) and Zheng 
et al. (2020))). The DEA method uses the data on input and output quantities, and creates a piece-
wise linear surface over the data points (Coelli and Rao, 2005). Compared to the parametric 
stochastic frontier approach, the DEA method does not need functional specification of the 
technology, or specific assumptions about the distribution of the inefficiency terms (Haider et al., 
2021). The Malmquist index measures the change in energy productivity of a country-sector 
between two time periods, by comparing its distance to a production efficiency frontier 
(maximum potential) in each period. The method assumes that the base production frontier has 
constant returns to scale (Rehman and Nunziante, 2023), while focusing on minimising inputs for 
given outputs. Furthermore, the approach accounts for changes in efficiency (i.e., how each 
country-sector moves towards the maximum potential frontier), as well as for technical changes 
(i.e., shifts of the frontier due to technological shocks). Under constant returns to scale, the 
technology set is defined as: 

𝑇𝑇𝑡𝑡 = {(𝑥𝑥, 𝑒𝑒,𝑦𝑦)|𝑥𝑥 ≥ 𝑋𝑋𝑡𝑡𝜆𝜆,   𝑒𝑒 ≥ 𝐸𝐸𝑡𝑡𝜆𝜆,   𝑦𝑦 ≤ 𝑌𝑌𝑡𝑡𝜆𝜆,   𝜆𝜆 ≥ 0} (10) 

where 𝑇𝑇𝑡𝑡 is the technology set, 𝑋𝑋𝑡𝑡 are the non-energy inputs, such as labour, ICT capital, and non-
ICT capital, over all country-sectors in year t, 𝐸𝐸𝑡𝑡 is the energy input, 𝑌𝑌𝑡𝑡 is the output, and 𝜆𝜆 is an 
intensity vector. 

Measuring the distance from the frontier, the input-oriented distance function is: 
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𝐷𝐷𝑡𝑡(𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑒𝑒𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖) = min
𝜃𝜃,𝜆𝜆

𝜃𝜃    𝑠𝑠. 𝑡𝑡.�

𝑋𝑋𝑡𝑡𝜆𝜆 ≤ 𝜃𝜃𝑥𝑥𝑖𝑖𝑖𝑖
𝐸𝐸𝑡𝑡𝜆𝜆 ≤ 𝜃𝜃𝑒𝑒𝑖𝑖𝑖𝑖
𝑌𝑌𝑡𝑡𝜆𝜆 ≥ 𝑦𝑦𝑖𝑖𝑖𝑖
𝜆𝜆 ≥ 0

(11) 

The distance function 𝐷𝐷𝑡𝑡  finds the smallest combination 𝜃𝜃  of inputs (𝑥𝑥, 𝑒𝑒) that produces the 
output y. Consequently, a value of 𝐷𝐷𝑡𝑡 < 1 suggests that a country-sector could reduce its inputs 
by 1 − 𝐷𝐷𝑡𝑡 and still produce the same output. 

We then define the Malmquist energy productivity index as: 

𝑀𝑀𝑖𝑖𝑖𝑖 =
𝐷𝐷𝑡𝑡(𝑥𝑥𝑖𝑖𝑖𝑖+1, 𝑒𝑒𝑖𝑖𝑖𝑖+1,𝑦𝑦𝑖𝑖𝑖𝑖+1)

𝐷𝐷𝑡𝑡(𝑥𝑥𝑖𝑖𝑖𝑖, 𝑒𝑒𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖) ⋅ �
𝐷𝐷𝑡𝑡(𝑥𝑥𝑖𝑖𝑖𝑖+1, 𝑒𝑒𝑖𝑖𝑖𝑖+1,𝑦𝑦𝑖𝑖𝑖𝑖+1)
𝐷𝐷𝑡𝑡+1(𝑥𝑥𝑖𝑖𝑖𝑖+1, 𝑒𝑒𝑖𝑖𝑖𝑖+1,𝑦𝑦𝑖𝑖𝑖𝑖+1) ⋅

𝐷𝐷𝑡𝑡(𝑥𝑥𝑖𝑖𝑖𝑖, 𝑒𝑒𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖)
𝐷𝐷𝑡𝑡+1(𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑒𝑒𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖)

(12) 

where 𝑀𝑀𝑖𝑖𝑖𝑖  is the Malmquist index between the year t and 𝑡𝑡 + 1, the first fraction represents 
efficiency change and the expression within the square root is the technical change. 

The efficiency change measures how far each country-sector is from the maximum production 
frontier, while the technical change measures how the frontier itself shifts due to changes in 
technology. A Malmquist index that is greater than one signifies productivity growth, and value 
below one indicates productivity decline. 

With the four dependent variables defined, we move on to estimate the impact of ICT capital and 
other control variables on productivity in the transport sector. We use a panel fixed effects model, 
in order to account for the unobserved country-sector fixed effects (time-invariant heterogeneity) 
and time fixed effects (common shocks and trends). The regressions are weighted based on the 
gross output of each country-sector in each year, in order to account for the varying sizes of each 
country and transport subsector. The variables are also transformed into natural logarithms. For 
aggregated ICT capital, our base panel fixed effects model is: 

ln𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽𝐶𝐶 ln𝐶𝐶𝑖𝑖𝑖𝑖 + �𝛽𝛽𝑘𝑘 ln𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘

𝐾𝐾

𝑘𝑘=1

+ 𝜇𝜇𝑖𝑖 + 𝜏𝜏𝑡𝑡 + 𝜖𝜖𝑖𝑖𝑖𝑖 (13) 

where 𝑌𝑌𝑖𝑖𝑖𝑖  is one of the four measures of productivity, 𝐶𝐶𝑖𝑖𝑖𝑖  is ICT capital, 𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘  represents the 
different control variables, 𝜇𝜇𝑖𝑖 are the country-sector fixed effects, 𝜏𝜏𝑡𝑡 are the year fixed effects, 
𝜖𝜖𝑖𝑖𝑖𝑖  is the error term, 𝛽𝛽𝐶𝐶  is the ICT capital coefficient, 𝛽𝛽𝑘𝑘  are the coefficients of the control 
variables, and K is the total number of control variables. 

Similarly, the model for the disaggregated ICT capital then takes the form: 

ln𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽𝐻𝐻 ln𝐻𝐻𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑁𝑁 ln𝑁𝑁𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑆𝑆 ln 𝑆𝑆𝑖𝑖𝑖𝑖 + �𝛽𝛽𝑘𝑘 ln𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘

𝐾𝐾

𝑘𝑘=1

+ 𝜇𝜇𝑖𝑖 + 𝜏𝜏𝑡𝑡 + 𝜖𝜖𝑖𝑖𝑖𝑖 (14) 

where 𝐻𝐻𝑖𝑖𝑖𝑖 are computing equipment (i.e., hardware), 𝑁𝑁𝑖𝑖𝑖𝑖 is communication (network) devices, and 
𝑆𝑆𝑖𝑖𝑖𝑖 is software. 
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In addition to estimating the base model for aggregated and disaggregated capital, we also 
analyse whether the impact of digitisation changes over time. We employ the novel method of 
Ditzen et al. (2025) to identify multiple structural breaks in our panel dataset. The method is able 
to identify structural breaks in panel data with interactive fixed effects, estimate the number of 
breaks, and their location. Applying this method, we identify a single structural break in our 
dataset, in 2009. We therefore split our sample into a pre-crisis period (1995 – 2008) and a post-
crisis period (2009 – 2019), and apply equation 13 to each of the subsamples, to quantify the 
impact of ICTs on different types of productivity before and after the structural break point. 

We use the same approach to analyse the impact of digitisation on productivity for countries with 
different productivity levels and different transport intensity levels. In the case of productivity 
levels, we split the sample into low productivity and high productivity countries, based on their 
labour productivity and energy productivity levels. Similarly, for transport intensity, we split the 
sample into low and high transport intensity countries, where transport intensity represents the 
value added of each country’s transport sector as a share of total value added. 

Lastly, we test for the potential endogeneity of ICT capital, i.e., where ICT capital may be 
correlated with the residuals. We test this by applying the efficient two-step system GMM panel 
data estimator (Arellano and Bover, 1995; Blundell and Bond, 1998), similarly as e.g., Rehman 
and Nunziante (2023). Our baseline system GMM estimation is: 

ln𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽𝑌𝑌 ln𝑌𝑌𝑖𝑖𝑖𝑖−1 + 𝛽𝛽𝐶𝐶 ln𝐶𝐶𝑖𝑖𝑖𝑖 + �𝛽𝛽𝑘𝑘 ln𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘

𝐾𝐾

𝑘𝑘=1

+ 𝜇𝜇𝑖𝑖 + 𝜏𝜏𝑡𝑡 + 𝜖𝜖𝑖𝑖𝑖𝑖 (15) 

where 𝑌𝑌𝑖𝑖𝑖𝑖−1 is the lagged measure of one of the four measures of productivity. 

The method is particularly useful for panel datasets which have a relatively low number of time 
periods compared to cross sections (Roodman, 2009). The greater number of available 
instruments can lead to greater efficiency of the estimates (Dimelis and Papaioannou, 2010). We 
use lagged levels of all the control variables, with a lag of two years or greater as instruments, 
and collapse the matrix of the instruments  to prevent overfitting (Acharya, 2016). We also report 
several diagnostic tests for the validity of the system GMM estimations. This includes the Hansen 
J test, which tests whether the set of instruments used is valid, i.e., uncorrelated with the error 
term, as well as the first and second-order serial correlations in the difference residuals, testing 
if the level-lagged instruments are not endogenous themselves. Robustness test results are given 
in the Appendix. 

5 Results 

5.1 Impact of ICTs on productivity 

We first present the baseline results labour productivity (Table 2) and TFP (Table 3). As the 
dependent and independent variables are in logarithms, the results are interpretable as 
percentages. For both aggregated and disaggregated ICTs, we report four different model 
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specifications, each controlling for a more complete set of independent variables. While model 1 
only includes the ICT share variable, as well as the country-sector and year unobservable fixed 
effects, model 4 contains all control variables. The fact that our results are generally consistent 
across the various model specifications provides some evidence of the robustness of our findings. 
We focus on Model 4. 

Table 2: Effect of digitisation on labour productivity 

 
Note: Panel fixed effects regression for finding the effect of aggregated and disaggregated ICT 
capital on labour productivity. Significance levels are: *** p < 0.01, ** p < 0.05, and * p < 0.1. 
1 Transparency level refers to the perceived level of corruption in each country. Countries are 
divided into three groups, from lowest transparency (1) to highest transparency (3). 

As Table 2 and Table 3 show, the share of ICT capital in total capital is positive and significant 
for both measures, but its impact on labour productivity is an order of magnitude larger than for 
TFP. Specifically, a rise in the ICT capital share from 10% to 11% would boost labour productivity 
level by 1%, but TFP by only 0.1%. A possible explanation for the difference in scale is the labour-
augmenting nature of ICTs in the transport sector. Many transport subsectors have high labour 
intensity, and ICT improvements (e.g., automated scheduling, fleet tracking, maintenance alerts, 
etc.) directly increase labour productivity by capital deepening, automating routine tasks. On the 
other hand, improving overall system efficiency, such as optimisation of logistics over the entire 
network, can take longer to come into effect. The control variables show similar coefficient signs 
for both labour productivity and TFP. 
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Table 3: Effect of digitisation on total factor productivity 

 
Note: Panel fixed effects regression for finding the effect of aggregated and disaggregated ICT 
capital on total factor productivity. Significance levels are: *** p < 0.01, ** p < 0.05, and * p < 0.1. 
1 Transparency level refers to the perceived level of corruption in each country. Countries are 
divided into three groups, from lowest transparency (1) to highest transparency (3). 

The tables also show the impact of the disaggregated digital technologies; computing equipment 
and software have a significant positive effect, stronger for labour productivity compared to TFP. 
The larger impact on productivity comes from computing equipment (i.e., hardware) rather than 
software, where a 1% increase in computing and software capital share boosts labour productivity 
level by about 0.09% and 0.06%, respectively. 

An unexpected result can be seen for communication devices capital, having a significant 
negative impact on both labour productivity and TFP. One interpretation of this result is as a 
reflection of the role of centralized decision-making, consistent with the framework proposed by 
Garicano (2000). With the expansion of information technologies (computing, software), 
information becomes cheaper to acquire, enabling lower-level workers to make better decisions 
without having to rely on their managers, i.e., decentralisation (Garicano, 2000; Garicano and 
Rossi-Hansberg, 2015). This may lead to faster decision-making, fewer bottlenecks, reduced 
burdens on managers, and greater efficiency, contributing to productivity gains. On the other 
hand, communication technologies make communication cheaper, allowing workers to consult 
with their managers more frequently, i.e., they facilitate centralisation (Bloom et al., 2014; 
Garicano and Rossi-Hansberg, 2015). This may improve coordination and reduce errors, but also 
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cause slower decision-making, increased bureaucracy, and more micromanagement. 
Consequently, communication technology may have a negative effect on productivity if it leads 
to more reliance on centralised decision-making. 

Table 4: Effect of digitisation on energy productivity 

 
Note: Panel fixed effects regression for finding the effect of aggregated and disaggregated ICT 
capital on energy productivity. Significance levels are: *** p < 0.01, ** p < 0.05, and * p < 0.1. 
1 Transparency level refers to the perceived level of corruption in each country. Countries are 
divided into three groups, from lowest transparency (1) to highest transparency (3). 

In terms of control variables, as expected, a greater share of highly skilled workers in the sector 
is correlated with higher productivity. Similarly, a larger share of female workers has a strongly 
significant effect on productivity for both productivity measures. Countries that are more open 
and export a greater share of goods and services experience higher productivity, as do countries 
that are more transparent and less restrictive for FDI. Energy prices are positively correlated with 
both productivity measures. 

The impact of aggregated and disaggregated digital technologies on energy productivity and the 
Malmquist energy productivity index can be seen in Table 4 and Table 5, respectively. The share 
of ICT capital in total capital has a strong, positive, and significant effect on both energy 
productivity and the Malmquist index, similarly as in Parker and Liddle (2017) and Ullah et al. 
(2023). Specifically, an increase of ICT capital share from 10% to 11% would boost energy 
productivity level by almost 1.5%, and the Malmquist index by about 0.7%. The pattern of results 
is similar to those for the other two productivity measures. 
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Table 5: Effect of digitisation on the Malmquist energy productivity index 

 
Note: Panel fixed effects regression for finding the effect of aggregated and disaggregated ICT 
capital on the Malmquist energy productivity index. Significance levels are: *** p < 0.01, ** p < 
0.05, and * p < 0.1. 
1 Transparency level refers to the perceived level of corruption in each country. Countries are 
divided into three groups, from lowest transparency (1) to highest transparency (3). 

5.2 Temporal dynamics and cross-sectional heterogeneity 

We next examine whether the positive impact that digitisation has on productivity and energy 
productivity changes over time. As described, we find that there is a single time structural break 
in our dataset, in 2009. We thus split our full sample into two subsamples, 1995 to 2008, and 
2009 to 2019. The results are shown in in Table 6. 
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Table 6: Effect of digitisation on productivity and energy productivity across time 

 
Note: Panel fixed effects regression for finding the effect of ICT capital on productivity and 
energy productivity across time. Significance levels are: *** p < 0.01, ** p < 0.05, and * p < 0.1. 

The impact of digitisation on both productivity and energy productivity is consistently positive 
throughout but becomes considerably weaker after the financial crisis, for all measures of 
productivity. A similar finding was also reported by e.g., Polák (2017) and Mollins and St-Amant 
(2019). Up to 2008, an increase in ICT capital share from 10% to 11% would raise labour 
productivity and TFP by about 1.5% and 0.3%, respectively. Post-2008 the impact on TFP 
disappears, while the effect on labour productivity falls to only 0.6%. A similar, albeit smaller, 
decline can be observed for energy productivity and the Malmquist index. This result is consistent 
with other work showing that the transport sector contributed notably to the aggregate 
productivity growth slowdown. 

The impact of ICTs on productivity for countries at different average productivity levels can be 
seen in Table 7 and Table 8, respectively. We split our sample into low productivity and high 
productivity OECD countries, based on their labour productivity and energy productivity levels.4 

Do countries benefit more - or less - from digitisation as they get more productive? 

 

 

 

 
4 The high transport productivity level countries in our sample are: Austria, Belgium, Czech Republic, 

Denmark, France, Germany, Italy, Luxembourg, Netherlands, Spain, Sweden, UK, and US. 
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Table 7: Effect of digitisation on productivity across productivity levels 

 
Note: Panel fixed effects regression for finding the effect of ICT capital on productivity across 
productivity levels. Significance levels are: *** p < 0.01, ** p < 0.05, and * p < 0.1. 
1 Transparency level refers to the perceived level of corruption in each country. Countries are 
divided into three groups, from lowest transparency (1) to highest transparency (3). 

Our results suggest that ICT investments have a larger positive effect in more productive 
economies, across all four of our measures of productivity. As such, digitisation generally boosts 
productivity, but this effect appears to be stronger as productivity increases (similarly as in e.g., 
Deng et al. (2022) and Lei et al. (2024)). For less productive countries, ICTs have only a small 
impact on productivity and energy productivity. However, for the more productive nations, ICTs 
have a positive, and significant effect on all productivity measures. In Table 7, an increase of ICT 
capital share from 10% to 11% in highly productive countries would boost labour productivity by 
1.3% and TFP by 0.14%. Similarly in Table 8, after a rise of ICT share from 10% to 11% in high 
productivity countries, energy productivity would increase by about 1.9% and the Malmquist 
index by 0.8%. Specifically, the Malmquist energy productivity index indicates that the positive 
effect of ICT capital is approximately three times greater in high productivity countries than in 
low productivity ones. This suggests that more productive countries can take better advantage of 
digitisation within the transport sector to further improve their overall productivity. 
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Table 8: Effect of digitisation on energy productivity across energy productivity levels 

 
Note: Panel fixed effects regression for finding the effect of ICT capital on energy productivity 
across energy productivity levels. Significance levels are: *** p < 0.01, ** p < 0.05, and * p < 0.1. 
1 Transparency level refers to the perceived level of corruption in each country. Countries are 
divided into three groups, from lowest transparency (1) to highest transparency (3). 

Various factors might contribute to this finding. High productivity economies can benefit more 
from wide network spillover effects, well established institutions, and easier access to finance 
and investments, allowing for the funding of even large-scale ICT projects. More productive 
nations may have better collaboration between firms, government institutions, and universities, 
bringing easier sharing of data and best practices. These institutional clusters may amplify the 
marginal returns of ICT investments. Similarly, better regulatory environments focusing on data 
protection and competition policy can reduce risk and promote widespread diffusion of ICTs, 
while better access to funding makes adoption easier. 
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Table 9: Effect of digitisation on productivity across transport intensity levels 

 
Note: Panel fixed effects regression for finding the effect of ICT capital on productivity across 
transport intensity levels. Significance levels are: *** p < 0.01, ** p < 0.05, and * p < 0.1. 
1 Transparency level refers to the perceived level of corruption in each country. Countries 
are divided into three groups, from lowest transparency (1) to highest transparency (3). 
2 Transport intensity represents the value added share of each country’s transport sector 
in overall total value added. 

We also examine the impact that digitisation has on productivity across different transport 
intensity levels. We define transport intensity as the value-added share of each country’s 
transport sector in their overall total value added. The countries in our sample are then split into 
lower transport intensity and higher transport intensity countries. The impact of ICTs on general 
productivity and energy productivity can be seen in Table 9 and Table 10, respectively. 

The impact of ICTs across transport intensities can be seen to be positive in general but they 
appear to boost the productivity measures considerably more in countries that are less transport 
intensive. For example, an increase in the ICT share from 10% to 11% will boost labour 
productivity by about 0.5% for high transport intensity countries, but 1.4% for low transport 
intensity economies. Similarly for the Malmquist index, the impact would be again about 0.5% 
for high intensity nations, but over 0.8% for low intensity economies. 
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Table 10: Effect of digitisation on energy productivity across transport intensity levels 

 
Note: Panel fixed effects regression for finding the effect of ICT capital on energy productivity 
across transport intensity levels. Significance levels are: *** p < 0.01, ** p < 0.05, and * p < 0.1. 
1 Transparency level refers to the perceived level of corruption in each country. Countries 
are divided into three groups, from lowest transparency (1) to highest transparency (3). 
2 Transport intensity represents the value added share of each country’s transport sector 
in overall total value added. 

5.3 Counterfactual analyses 

Finally, we can illustrate how productivity and energy productivity levels and growth would differ 
in the counterfactual worlds of higher or lower ICT investment. The fall in labour productivity 
and energy productivity due to ICT capital share being 1 p.p. lower can be seen in Figure 4. This 
can be seen to immediately reduce labour productivity by about 1.8% in 1995 with the impact 
getting cumulatively larger to reach 2.7% by 2019. It would reduce energy productivity by about 
2.5% initially, with the decline reaching almost 3.8% by 2019. 
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Figure 4: Percentage fall in productivity due to reduction of ICT share in total capital by 1 p.p. 
(authors’ own work). 

A similar but opposite scenario can be seen in Figure 5. Had the ICT investments been 
continuously 1% larger since 1995, the labour productivity level would be a cumulative 4 p.p. 
higher by 2019, and the energy productivity level would be higher by 6 p.p. by 2019. 

 

(a) (b) 

Figure 5: Productivity development if the annual growth of ICT share was 1% higher, for (a) overall 
productivity, and (b) energy productivity (authors’ own work). 

6 Conclusion 

The transport sector is currently one of the least digital-intensive, with some of the largest GHG 
emissions. The sector has also made a notable contribution to the post-2008 slowdown in 
productivity growth. The potential for greater adoption of ICTs to increase productivity and 
reduce energy use, leading to lower GHG emissions, is clear. Despite the importance of the sector 
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for wider economic activity, including global supply chains, there has been a notable absence of 
analysis of its productivity trends and the impact of digitisation in the existing literature. 

This paper helps fill the gap. We found that a higher ICT capital share has a positive, robust, and 
economically (as well as statistically) significant impact on all measures of productivity used – 
although with a much stronger impact on labour productivity and energy productivity than on 
TFP. These results reflect the role of ICTs in both raising output per worker, and particularly 
strong impact in reducing energy intensity, but to a lesser degree in shifting the production 
frontier. Computing hardware investments drive the majority of improvements in labour 
productivity and TFP, while software investments account for the majority of gains in energy 
productivity, perhaps as this allows for real-time optimisation of fuel and electricity use. 

The impact of digitisation on the sector was considerably larger in 1995 – 2008 than in 2009 – 
2019, echoing the wider productivity slowdown. Our counterfactual analyses illustrate the power 
of compounding: sustaining ICT investment at 1% above its actual path would have raised the 
sector’s labour productivity by 4 p.p. and energy productivity by about 6 p.p. by 2019, compared 
with the actual levels. 

In general, our findings demonstrate that investment in digital technology is crucial for driving 
both productivity and energy efficiency in the transport sector. Governments in OECD countries 
should therefore focus on creating long-term ICT investment frameworks that would promote 
and ensure continuous and predictable investments into digitisation. National ICT policies rarely 
highlight transport, but it is an important input into other sectors and so productivity 
improvements in the sector can have spillover and complementary effects elsewhere. For 
example, transport policies could be aligned with broader “smart city” initiatives, to ensure 
interoperability with new traffic management systems, logistics, and smart energy grids. Given 
that we found the impact of digital investments is particularly strong for energy productivity, 
transport policies should specifically target energy-saving digital technologies, to not only boost 
productivity, but also contribute to efficiency and the targets of net-zero emissions by 2050. 
Integrating grants and rebates, along with carbon pricing and fuel taxes, into ICT adoption 
programs can increase the incentive to adopt ICTs that are also energy focused. 
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Appendix 

A.1 Detail on the data construction 

All of the EU-KLEMS variable units are in nominal terms and in national currency of each country. 
Therefore, in order to be directly comparable to each other, it is necessary to transform the 
variables into real terms and a common currency. Within our dataset, we use the 2017 US dollar. 
To transform the data from nominal to real terms and a common currency, we use the latest data 
(2023) from the GGDC Productivity Level Database (Inklaar et al., 2024). The database contains 
information on purchasing power parities (PPPs) for different countries and sectors. Following 
similar approach to Schulte et al. (2016), we construct conversion factors from the PPP data, 
which allow us to create variables in real terms.  

We estimate the conversion factors as: 

𝜙𝜙𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = �
𝑃𝑃𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥2017
𝑃𝑃𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

� ⋅ �
1

𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖2017
� (𝐴𝐴1) 

where 𝜙𝜙𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 is the conversion factor for variable x, country i, transport subsector s, and year t, 
𝑃𝑃𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 is the price index of variable x, country i, transport subsector s, and year t from the EU-
KLEMS data, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖2017 is the total PPP value for country i and sector s in year 2017. 

After calculating the conversion factors from equation A1, the variables in real terms are 
calculated as: 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
2017$ = 𝜙𝜙𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 ⋅ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝐴𝐴2) 

where 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
2017$ is the converted variable in real 2017 US dollars. 

The variables related to energy are taken from the International Energy Agency databases. In 
particular, industrial electric and non-electric energy prices for different countries over time are 
taken from the IEA Energy Prices database (IEA, 2025a). Furthermore, the data on the detailed 
industrial electricity and non-electric energy consumption for different countries over time comes 
from the IEA World Energy Balances database (IEA, 2025b). Within our energy price and 
consumption data, we identify six separate energy sources, including electricity, crude oil, gas, 
petroleum products, coal, and others (e.g., heat, biofuel, waste). The energy prices are again 
converted in order to be denominated in real 2017 US dollars, while energy consumption is 
converted to be in US dollars per kilotonnes of oil equivalent ($/ktoe). 

Furthermore, a range of control variables is taken from additional online sources. We take the 
variable measuring the level of transparency for each country from the Transparency 
International dataset (Transparency International, 2025), while the measure of the restrictiveness 
for foreign direct investment (FDI) is taken from the OECD database (OECD, 2025). The data on 
transport infrastructure is collected from the United Nations Economic Commission for Europe 
statistical database (UNECE, 2025). The trade variables, such as exports of goods and services as 
a share of GDP, are taken from the World Bank (World Bank, 2025), along with the data for total 
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population of each country over time, allowing for the calculation of per capita variables. 
Furthermore, the human capital variables, such as the share of high skilled workers and females 
by country and sector, are collected from the International Labour Organisation and the Eurostat, 
respectively (ILOSTAT, 2025; Eurostat, 2025). In the case of missing data for several variables, 
data from national databases (e.g., US Bureau of Labor Statistics) is also introduced. 

A.2 Descriptive statistics 

Table A1 reports the descriptive statistics for the key variables of our dataset over the entire 
period examined. In general, there are considerable differences between the lowest and highest 
percentiles. The average transport subsector has a gross output of $50.5 billion, and employs 
about 230,000 persons. However, typically the output is between $2.3 billion and $26 billion, 
while the number of employees ranges between 11,000 and 175,000. The median level of ICT 
capital in the transport subsectors is $38 million, with the largest part coming from software ($21 
million), and smaller parts from computing equipment ($8 million) and communication devices 
($5 million). Nevertheless, ICT capital represents a small share of total capital, as the median 
level of non-ICT capital is $762 million. Therefore, the median share of ICT capital in total capital 
is 5.9%. 

Table A1: Descriptive statistics of the key variables 

 
Note: The unit ktoe represents kilotonnes of oil equivalent. 

Furthermore, the median transport subsector has 16.5% share of high-skilled workers, with 20.7% 
of workers being female, a low perception of corruption and low restrictiveness for FDI (0.2 out 
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of 1.0), and a total of 955 km of land infrastructure per 1,000 km2. In terms of exports as a share 
of GDP, these range between 27.1% and 54.1%, while median per capita transport equipment and 
R&D are at $8.20 and $0.20, respectively. Looking at energy variables, the median transport 
subsector uses 169 ktoe of energy annually, and pays a price of $932,000 per ktoe of energy used. 

A.3 Robustness checks 

We conduct a series of robustness checks that test any potential issues in our data and 
methodology and strengthen the confidence in our findings. One of the key possible issues 
addressed is the potential endogeneity of ICT capital, where ICT capital may be correlated with 
the residuals. We test this potential issue by applying a two-step system GMM panel data 
estimator with the lagged levels of all control variables used as instruments, as in e.g., Cardona 
et al. (2013). Applying this approach to the base model of this paper, the results can be seen in 
Table A2 for all four measures of productivity, i.e., labour productivity, TFP, energy productivity, 
and the Malmquist energy productivity index. 

Table A2: System GMM results – effect of digitisation on labour and energy productivity 

 
Note: System GMM regression for finding the effect of ICT capital on productivity and energy 
productivity. Significance levels are: *** p < 0.01, ** p < 0.05, and * p < 0.1. 

The system GMM estimation includes a measure of the productivity lag; as expected this variable 
is strongly positive and very significant for all measures of productivity, as past productivity is 
correlated with future productivity. Looking at our key independent variable – the ICT capital, 
the coefficients remain positive and strongly statistically significant for all productivity measures, 
suggesting that ICTs boost both general and energy productivity, confirming our earlier findings. 
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For general productivity, the GMM coefficient of labour productivity is slightly smaller compared 
to panel fixed effects, while the TFP coefficient is slightly larger. Nevertheless, the results confirm 
our previous finding that digitisation boosts labour productivity more than TFP. Similar is the 
case for energy productivity, where the coefficients are slightly smaller compared to panel fixed 
effects, but the stronger effect on energy productivity compared to the Malmquist index is 
maintained. These are comparable findings to e.g., Tambe and Hitt (2012) who found GMM 
estimates to be about 10% lower compared to unadjusted estimates. Examining the diagnostic 
tests for the validity of the system GMM, the Hansen J-test fails to reject the null hypothesis that 
the instrument set is valid for all productivity measures. This suggests that the instrumental 
variables are uncorrelated with the error term. Similarly, the AR(1) and AR(2) tests indicate a 
correctly specified model. All coefficients for AR(1) are significant, while all AR(2) coefficients are 
insignificant, showing that the instruments are valid and the moment conditions are correctly 
specified. Therefore, the system GMM results are consistent with the main results, and it can thus 
be concluded that our findings are robust to the potential endogeneity of ICT capital. 

Apart from the test for endogeneity, we conduct several other robustness checks. First, we test 
for the stationarity of our panel dataset for all four measures of productivity, using the Levin-Lin-
Chu test, the Im-Pesaran-Shin test, and the Fisher test. As all of the tests for all productivity 
variables are significant, we conclude that our panels are in fact stationary (Table A3). 

Table A3: Results of the tests for stationarity of the panel dataset 

 
Note: The numbers are test statistics. Significance levels are: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Second, we conduct the Pesaran test of cross-sectional independence, checking whether 
residuals across cross-sectional units are uncorrelated. As the coefficients for all four productivity 
measures are insignificant, we find no cross-sectional dependence in our data (Table A4). 

Table A4: Results of the test for panel cross-sectional dependence 

 
Note: The numbers are test statistics. Significance levels are: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Third, we estimate several Granger causality tests for the four productivity measures, to check 
whether ICT capital Granger-causes productivity and/or vice versa. The results of the tests 
indicate that ICT capital share Granger-causes productivity, but not vice versa. This is true for all 
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productivity measures, suggesting that causality flows more from ICT capital towards 
productivity, rather than in the opposite direction (Table A5). 

Table A5: Results of the Granger causality tests 

 
Note: The numbers are test statistics. Significance levels are: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Fourth, we run multicollinearity tests, to check whether our independent variables are not linear 
functions of each other. The tests estimate a variance inflation factor (VIF) for each variable, with 
a value of below ten typically signifying an acceptable level. Our highest variable has a VIF of 
4.7, and the mean VIF value is at 2.4; therefore, we conclude that there is no multicollinearity 
present in our estimations (Table A6). 

Table A6: Results of the test for multicollinearity 

 
Note: The numbers represent the test statistics. The model used is a baseline WLS estimation 
with all independent and control variables. The mean VIF value is 2.43. 

And fifth, we conduct the Ramsey RESET test for omitted variable bias, as well as the model 
specification error test (link test). As both of the tests are insignificant, we conclude that our 
model is indeed correctly specified (Table A7). 

Table A7: Results of the omitted variable bias and model specification error tests 

 
Note: The numbers represent the test statistic for the Ramsey test and P-values for the Link 
test. The model used is a baseline WLS estimation with all independent and control variables. 
Significance levels are: *** p < 0.01, ** p < 0.05, and * p < 0.1. 
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